
Accelerated Testing of On-Board Diagnostics  

to appear in Quality and Reliability Engineering Ingernational 8/2/05:  1 

Accelerated Testing of On-Board Diagnostics 

 

Spencer Graves1, Søren Bisgaard2, Murat Kulahci3, John Van Gilder4, John 

James5, Ken Marko5, Hal Zatorski6, Tom Ting7, Cuiping Wu8 

 

1 PDF Solutions, Inc., San Jose, CA 95110 

2 University of Massachusetts, Amherst, MA 01003 

3 Arizona State University, Tempe, AZ 85287 

4 General Motors Proving Ground, Milford, MI 48380 

5 Ford Research Labs, Dearborn, MI 48121 

6 DaimlerChrysler, Auburn Hills, MI  48326 

7 General Motors Research, Development and Planning, Warren, MI 48090  

8 DaimlerChrysler Proving Grounds, Chelsea, MI 48118 

 
Modern products frequently feature monitors designed to detect actual or 
impending malfunctions.  False alarms (Type I errors) or excessive delays in 
detecting real malfunctions (Type II errors) can seriously reduce monitor utility.  
Sound engineering practice includes physical evaluation of error rates.  Type II 
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1.  INTRODUCTION 

Many products today include on-board diagnostics (OBDs) designed to detect 

actual or impending malfunctions and to alert the user when maintenance is required;  see 

Box et al. [1] and CARB [2].  Typically, monitoring algorithms consist of real time 

processing of a stream of incoming data, for example with a cumulative sum (Cusum) or 

an exponentially weighted moving average (EWMA), and setting an alarm when an 

appropriate statistic exceeds a threshold, h.  A key issue in the design of monitors is, 

however, that diagnostics may fail to detect a real malfunction in a timely fashion, a Type 

II error, or report a malfunction when none exists, a false alarm or Type I error;  see Box 

et al. [3].   

Error rates can often be evaluated from theory.  However, the assumptions 

required for the theory will always be violated to some degree.  Sound engineering 

practice therefore calls for additional direct physical verification (a) to confirm that 

violations of assumptions are negligible and (b) in many cases to refine estimates of 

theoretical model parameters in hopes of compensating adequately for violations of 

assumptions.  For Type II errors this is relatively simple:  A malfunction is artificially 

produced and the monitor’s response observed.  Unless the monitor responds quickly and 

consistently, it must be modified.  Thus empirical evaluation of Type II errors can be 

done relatively inexpensively and will not be discussed in this article.   

Empirical evaluation of the Type I error rate is more challenging.  Ideally multiple 

copies of the plant would be tested for the entire design life.  (In this article, the system 

monitored will be called the “plant”, for consistency with the control theory literature.)  

Such testing would far exceed any reasonable budget.  Fortunately, in many cases 
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appropriate accelerated testing could produce adequate data, and therefore also better 

monitors, for a reasonable budget.   

Accelerated testing, whether for OBDs or other applications, is built on the 

principle that information is lost when a time to failure is replaced by the knowledge that 

the lifetime exceeds a certain censoring time such as time on test;  if certain censored 

observations can be converted into observed failures by calibrated increases in stress, the 

resulting increases in information can yield more accurate predictions of lifetime 

distributions in less time for less money.  This can be seen in the standard derivation of 

maximum likelihood estimation for exponentially distributed failure times with mean or 

characteristic life R, where the Fisher information for ln(R) is ( )RJ ln  = ( )[ ]Rtn 0exp1 −−  

with n observations using a censoring time 0t .  Typical OBD testing involves running 

only one unit to its design life, so n = 1.  Moreover, the censoring time 0t , while quite 

large, is often small relative to R.  If this holds, then the first order Taylor expansion for 

ex gives us roughly ( )RJ ln  ≈ Rt0  < 1.  However, if accelerated testing makes R 

sufficiently small, we can also reduce 0t  enough to allow increasing n while still having 

R modest relative to the reduced 0t , which would also make the information per 

observation closer to 1.  This would increase ( )RJ ln  from a number much smaller than 1 to 

something closer to n.  (The Fisher information depends on the parameterization;  since 

we anticipate manipulating R to generate early false alarms, we consider here the 

information for ln(R) rather than R or 1−R  as ( )RJ ln  is dimensionless and roughly 

interpretable as squares of percentage change.)   
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Of course, the utility of this rests on the adequacy of the model relating the stress 

conditions to normal use.  For example, in traditional accelerated life testing, an 

Arrhenius or Eyring relationship is used to model the effect of temperature on lifetime of 

many materials (see Nelson [4] and Meeker and Escobar [5]) with test results used to 

estimate critical parameter(s) of the Arrhenius or Eyring relationship.  Deroune, Parmon 

and Lemos [6] describe applications of accelerated testing for different types of catalysts.  

As we will illustrate below, a relationship between parameters of the run length 

distribution and the process parameters can serve a role for accelerated testing of 

monitors similar to Arrhenius or Eyring relationships for testing materials. 

We can often record the time to failure under stressed conditions with less time 

and money than would be required to observe a lifetime of normal use of a product.  In 

this article we will describe methods for accelerated testing of monitoring systems with 

specific emphasis on threshold selection and false alarm rate estimation.   

2.  THRESHOLD SELECTION 

As an introduction to our proposals for accelerated testing of monitoring systems, 

we will first discuss the selection of thresholds for triggering alarms.  In general terms, 

alarm thresholds are selected to balance the probability of an excessive delay against the 

probability of a false alarm.  Figure 1a shows the conceptual relationship between the 

threshold, h, the probability of a false alarm and an excessive delay for setting a valid 

alarm.  As illustrated in this graph, increasing the threshold reduces the probability of a 

false alarm while increasing the probability of an excessive delay.   

(Figure 1 about here)  
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Ideally the threshold is selected such that both error rates are sufficiently low.  

However, in practice complete separation as exemplified in Figure 1a is not always 

possible.  Figure 1b represent a situation where there is no clear separation.  For such 

cases a compromise must be made between the probabilities of a false alarm and an 

excessive delay.  

Conceptually, threshold selection requires an evaluation of the consequences 

(“cost”) of an excessive delay versus a false alarm.  Different applications require 

different compromises.  In the automotive context roughly 100 − 150 OBDs are running 

simultaneously all tied to a single malfunction indicator light (MIL).  Thus a false alarm 

problem caused by one monitor may raise questions about all.  To avoid “teaching” the 

driver to ignore the MIL, the false alarm rate for the individual monitor must be a small 

fraction of one percent in the design life of the plant.  Thus this is an application where 

the Type I error rate must receive serious attention to avoid negating the original intent of 

the monitoring scheme.   

An implantable defibrillator designed to detect and interrupt excessive heart rate 

(tachycardia) exemplifies the opposite extreme.  A false alarm (Type I error) implies that 

the patient gets an unnecessary and uncomfortable but not life threatening electric shock 

to the heart.  However, an excessive delay to detect a problem, a Type II error, may mean 

that tachycardia proceeds uninterrupted to patient death (Gunderson [7]).  The point here 

is that the design targets for Types I and II error rates will vary with the application and 

will likely not be the same for an implantable defibrillator as for automotive emission 

controls.   
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3.  A MATHEMATICAL BASIS FOR ACCELERATED TESTING 

A major challenge associated with testing the performance of a monitor is how to 

reliably estimate the false alarm rate (Type I error) across the entire design life.  

Conceptually, the smaller the false alarm rate, the fewer actual events will likely occur in 

a given test period, and the longer the process must be observed to validate compliance 

with design targets.  Further, the smaller the false alarm rate, the larger the relative 

uncertainty associated with any estimate of it.   

Lai [8] reported that the distributions of run lengths to false alarms for generalized 

likelihood ratio (GLR) are often approximately exponential.  This is consistent with our 

own unpublished simulation studies of algorithms like Cusums, EWMAs and 2-in-a-row 

of both independent and autocorrelated observations.  Thus, for the examples considered 

in this article, we shall assume that the probability of a false alarm before time t is  

 )/exp(1}Pr{ RttT −−=≤ , (1) 

where R = mean time to a false alarm.  We will denote the false alarm rate }Pr{ tT ≤  

with π.   

Now suppose a theoretical relationship ),( θhRR =  between the average run 

length R, the threshold h, and a vector of process parameters ),,( 1 kθθ K=θ ’ is known.  

This relationship can then be the basis for developing accelerated testing schemes.  

Specifically, we can test a monitoring system under “stressed” conditions, where for 

example the threshold is lowered or process parameters are changed.  The results of this 

testing can be used to estimate one or more components of θ, which are then used with 

the relationship ),( θhRR =  to predict the average run length under normal conditions.   
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Example 1.  Suppose we want to develop a Cusum monitor for an automobile that 

receives a normally distributed independent input signal with mean μ  and variance 2σ  

once every mile.  Further suppose the expected design life is 0001001 ,t =  miles.  For the 

Cusum, Bagshaw and Johnson [9] provided an asymptotic approximation for R, later 

modified by Reynolds [10] and Siegmund [11] given by  

 ( ) ( )[ ]aa hhhRR μμ
μ

μ 212exp
2

1, 2 +−−== ,   (2) 

where ha = h + 1.166, h is the threshold, and μ  is the mean of the observations 

Cusummed, rescaled to standard deviation 1=σ ;  for μ = 0, R(h, μ) is defined by the 

appropriate limit.  (Graves et al. [12] present refinements of ha = ( )μ,hha  that make (2) 

more accurate.)   

This relationship is shown graphically in Figure 2.  Of particular importance for 

accelerated testing, notice that for 0<μ  (i.e. “good” vehicles), small changes in h 

produce very large changes in R.   

(Figure 2 about here)  

Now suppose the data coming from a “good” prototype system has been rescaled to 

variance 12 =σ , which made the mean of the input signal 2−=μ .  We also assume that 

for a “good” system, μ  will not change over time.  To achieve a design goal of a false 

alarm rate less than 1% in the t1 = 100,000 mile design life of the plant, an engineer 

considers setting the threshold at h = 3.4.  With one observation per mile, this implies 

using (2) that 000,700,10≈R .  Next, using (1) we find that the probability of a false 

alarm in t1 = 100,000 miles with one observation per mile will be π1 ≈ 0.0092.   
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Thus, to the extent that these computations are accurate, if we tested 1,000 

vehicles 100,000 miles, we might expect to see roughly 9 false alarms.  However, that 

level of testing is not feasible, yet without some similar level of testing, it can be 

practically impossible to obtain a reasonable upper confidence limit for the probability of 

such rare events.   

However, suppose we artificially lowered the threshold to 1=h  during a test 

period.  Then 724≈R  and the probability of a false alarm in a test period of duration t0 = 

1,000 miles would be π0 75.0≈ .  False alarms would then happen so frequently that a 

much shorter test period would produce data to support substantially improved prediction 

by extrapolation of the performance of the monitor with more realistic production 

thresholds around 43.h = .  Although we assumed in (2) that we could rescale the data to 

σ  = 1, our procedure includes provisions for estimating a value for σ  different from 1 in a 

way that will hopefully compensate adequately for violations of assumptions such as 

dependence between observations and nonnormality.  The resulting σ̂  would not be the 

standard deviation of the dependent, nonnormal observations we have but of 

hypothetical, independent normal observations for which the monitor would have 

essentially the same run length distribution.   

4.  A CONCEPTUAL FRAMEWORK FOR ACCELERATED TESTING 

As indicated above, accelerated testing of monitors for empirical estimation of a 

false alarm rate is based on data from the actual system under “stressed” conditions.  The 

base for the acceleration is knowledge of an approximate relationship ),( θhRR =  

between the average run length, the threshold h and the process parameters θ  so we can 

predict what the average run length will be under both normal and accelerated conditions.  
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Typically the process parameters θ  will be the mean and the variance of the data 

generating process.   

These considerations lead to three different modes of extrapolation that can be 

used in accelerated testing for OBD:   

1. Threshold:  Extrapolate from artificially low thresholds required to induce false 

alarms during a test period, h0 , to production thresholds, h1 , at which few 

“good” plants will generate false alarms in the design life.  

2. Condition:  Adjust for anticipated variations in the condition of the plant to 

account for unit-to-unit variations at the end of the production line and for 

deterioration in the condition of the plant over its design life assuming these 

conditions remain within limits of what is considered “good”, e.g., from mean 

μ0 during testing to μ1 for some relevant portion of the design life.   

3. Time:  Adjust for the longer time period in the design life, t1, relative to the test 

period t0 .  

Traditional accelerated testing increases stress (here threshold) to reduce time.  We add 

condition to reduce the gap between the beautiful models and the messy realities with 

which all practical engineers must work.   

We will now elaborate further on these three modes of acceleration.  

4.1  Variations in Detection Thresholds 

As mentioned with (1), the exponential distribution provides a reasonable 

approximation to the run length distributions of many monitors even with serially 

autocorrelated observations under constant good conditions of the plant.  Certain patterns 

of deterioration might give this run length distribution an increasing hazard rate, possibly 



Accelerated Testing of On-Board Diagnostics  

to appear in Quality and Reliability Engineering Ingernational 8/2/05:  10 

making the Weibull a better model than the exponential, but we have not explored that 

possibility.   

With automobiles, observations will usually be serially dependent, non-normally 

distributed and have non-constant variance.  Research by Bagshaw and Johnson [9] 

suggests that the average run length for the Cusum of autocorrelated normal observations 

can be adequately modeled by assuming independent, normally distributed observations 

by appropriately adjusting σ .  The work of Siegmund [11] seems to suggest that further 

adjustments of σ  might similarly compensate for nonnormality.  Also, transformations 

can often reduce simultaneously inhomogeneity of variance and nonnormality.   

Based on these considerations it seems reasonable to assume for a broad class of 

problems that we can obtain an approximate relationship ),( θhRR =  between the 

average run length R, the threshold h and process parameters θ .  The process parameters 

will typically be the mean μ  and the standard deviation σ  so that R = R(h, μ , σ ).  The 

probability of a false alarm for μ  = a constant good condition in a time period t is then 

approximately Pr{T < t} = 1 – exp[ – t / R(h, μ , σ ) ].  This expression then summarizes 

for a given σ  the effect on the probability of an alarm for  h = threshold, μ = condition of 

the plant, and t = time.  For accelerated testing of monitors we want to extrapolate Pr{T < 

t | h, μ , σ} from t = t0 to t = t1, from test thresholds 0h  to production thresholds 1h , and 

from the actual condition 0μ  during testing, etc. 

Whatever run length distribution we use, we are primarily interested in the lower 

tail of the lifetime distribution and are largely unconcerned with whether the upper tail of 

the distribution is accurately characterized.  This helps justify estimating R from censored 
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run lengths – provided we observe enough false alarms to support reasonable estimation 

of the parameter(s) of the distribution used.  Indeed, a run length distribution that was 

accurate except in the lower tail would be completely useless for our purposes;  

moreover, this discrepancy could only be detected with substantial observations in that 

lower tail, and these would be difficult to obtain prior to commercialization without 

accelerated testing and goodness of fit tests using likelihood for censored observations.   

4.2  Variation in the Condition of the Plant 

In the OBD context, it is frequently reasonable to assume that the condition of the 

plant is adequately characterized by the mean μ  of that condition and estimated by a 

short-term average of observations for that parameter.  This condition can vary from good 

to bad as illustrated in Figure 3.  The scale in Figure 3 has two special points marked 

“worst acceptable (w.a.)” and “best unacceptable (b.u.)”.  Conditions w.a. or better are 

considered good, while conditions b.u. or worse are considered bad.  Design objectives 

for a monitor are naturally stated in terms of the timeliness of detecting a bad condition 

and the maximum proportion of good units expected to generate a false alarm in the 

design life of the plant.  The difference between these requirements means that there must 

be separation between w.a. and b.u.  Otherwise, no feasible solution will exist. 

(Figure 3 about here)  

In the automotive context, the condition μ  exhibits two types of variability.  

First, different units at the end of the production line will differ due to production 

variability.  Second, a given unit will also exhibit wear over its entire useful life.  

Moreover, there will typically be substantial variation between units in the pattern of 

deterioration over time.  In Figure 4 we illustrate symbolically the life trajectories for 
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four different vehicles:  one constant as new (a.n.), one constant w.a., one deteriorating 

linearly from a.n. to w.a., and the fourth deteriorating abruptly from a.n. to w.a. at 20,000 

miles.  [The term “new” here is used in two different senses:  It is used to denote the time 

period immediately following completion of production of the unit and preceding any 

detectable deterioration or damage.  It is also used in the phrase “as new (a.n.)” to denote 

a typical condition for units in this time period.]   

From the manufacturers’ and regulators’ points of view, the issue is not 

necessarily the performance of the OBD on an individual vehicle.  The primary concern 

is with the performance of entire fleets.   

Now suppose sufficient prior data are available to develop models of the 

stochastic nature of the input signals across a large population of products and over time.  

Such models can then be used in conjunction with ),,( σμhRR =  and data obtained from 

a smaller test fleet to estimate the false alarm rate for a larger population of products.   

(Figure 4 about here)  

 

4.3  Probabilities of a False Alarm for Varying Durations of Time 

As above, (ti , hi , μi) = time, threshold, and condition of the plant during testing (i 

= 0) and production (i = 1).  The required extrapolation can be accomplished with the 

knowledge of ( )θ,hRR =  and the cumulative probability distribution function (cdf) of 

the time to a false alarm, Pr{T < t}, as a function of t.   

A key issue is the selection of the test period t0.  Meeker and Escobar [5] note that 

reducing t0 will tend to (a) increase the sensitivity of the analysis to deficiencies in the 

model used for extrapolation, and (b) amplify the effect of sampling variability.  They 
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quote Evans [13], who suggested that acceleration factors of 10 “are not unreasonable”, 

but factors much larger may involve excessive risks in extrapolation.  This advice in the 

OBD context would have t0 = 10,000 = 0.1 t1.   

In the next section we will describe more specifically how accelerated testing for 

OBD is organized.   

5.  ORGANIZING ACCELERATED TESTING FOR OBD 

Figure 5 summarizes hypothetical 10,000 mile testing at six different thresholds, h 

= 0.5, 1.0, 1.5, 2.0, 2.5, and 3, at which 28, 16, 7, 3, 1 and 0 false alarms were recorded at 

the mileages indicated in the plot.  These data could be collected in at least two different 

ways.  Either the raw data from a single unit could be processed in parallel against 

several different thresholds or several units could be tested with different thresholds.  In 

either case, each time a monitor exceeds its threshold, appropriate data are stored and the 

monitor is reinitialized.   

(Figure 5 about here)  

In the next section, we illustrate our methodology assuming for simplicity that the 

only data available were the top three lines of Figure 5, for h = 2.0, 2.5, and 3.0.  These 

are shown in Figure 6.  We see that at h = 3.0, no false alarms were observed in the 

10,000 miles.  Thus, this one observation was censored at 10,000 miles.  We write this as 

ct 1,3  = 10,000 miles where the superscript “c” indicates that we observed a censoring time 

of 10,000 miles, and the run length exceeded that.  The two subscripts “3,1” denote the 

threshold, 3, and index the observations at that threshold, 1.   

(Figure 6 about here)  
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At h = 2.5, one false alarm was observed at 6,528 miles.  The monitor was reset, 

and the vehicle went the remaining 3,472 of the 10,000 miles without another false alarm.  

We denote this as t2.5,1 = 6,528 and ct 2,5.2  = 10,000 – 6,528 = 3,472.  (If a false alarm was 

set at 6,528 miles, but the monitor was not reset until 6,537, then ct 2,5.2  = 3,463 not 3,472.)   

Similarly, at h = 2.0, false alarms were observed at 2,760, 5,768, and 9,272 miles.  

We denote these t2,1 = 2,760, t2,2 = 5,768 – 2,760 = 3,008, and t2,3 = 9,272 – 5.768 = 

3,504.  No failures were observed in the remaining 728 of the 10,000 mile testing, which 

we denote as ct 4,2  = 728.   

We will assume that these run lengths are all statistically independent.  This 

assumption would be violated if the run lengths to different thresholds were obtained 

from monitors using different thresholds processing data from the same test unit.  For 

example, two runs of 100 observations each with a threshold of 1 might be generated 

from the same observations that produced a run of 200 observations against a threshold of 

2.  Clearly, there would be statistical dependence between these three run lengths, which 

will not be considered in the present article;  we assume instead that each test unit 

employs only one threshold.  (Of course, if a manufacturer had the capability to process 

all the data simultaneously against different thresholds, we would encourage that 

practice.  If the effects of this dependency were found to be material, we would need to 

develop a more appropriate analysis methodology, possibly using Monte Carlo, e.g., 

Robert and Casella [14] and Carlin and Louis [15].  We would be negatively impressed 

with any statistician who would tell engineers to collect less data, just because they didn’t 

know how to model the dependence!)   
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A more subtle issue is that high serial dependence between successive 

observations could generate serial dependence between successive run lengths computed 

from those observations.  This problem would be greater with lower thresholds; 

successive runs to higher thresholds would necessarily employ observations that are 

farther apart and therefore presumably less serially dependent.  For the present 

discussion, we assume that this effect is negligible.   

Another issue is that even modest levels of serial dependence between successive 

observations can seriously distort the run lengths, and average run lengths in particular, 

of monitors (e.g., Cusums, EWMAs) computed from those numbers.  In the present 

discussion, we assume that an alternative choice for the standard deviation of these 

observations can adequately compensate the existing level of serial dependence, as 

mentioned above in section 4.1.  As previously stated, if any of these assumptions are 

considered inappropriate, the present methodology could be revised to simulate via 

Monte Carlo assumptions considered more appropriate.   

6.  A WORKED EXAMPLE 

Monitors that trigger on the second observation in a row exceeding a threshold are 

sometimes legally prescribed and used in the automotive context.  We shall assume that 

the run lengths in Figure 5 are run lengths to the second observation in a row exceeding a 

threshold.  We do this largely to simplify the discussion of accelerated testing principles, 

because the theoretical properties for k-in-a-row monitors are better known and more 

easily described (see below) than for other monitors such as Cusums or EWMAs that 

may make more efficient use of data typically encountered in engineering applications.  

As an example we will apply the accelerated testing methodology to a 2-in-a-row 
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monitoring rule assuming one observation is processed per mile and the design life of the 

vehicle is miles0001001 ,t = using the simulated data in Figure 6.  

In the automotive context often as many as 150 monitors run simultaneously tied 

to the same malfunction indicator light (MIL), with each testing for a different type of 

malfunction.  If 50 of them were statistically independent with false alarm rates for each 

of 2% in the design life of the vehicle (while the false alarm rate for the other 100 were 

negligible), this would generate on average one false alarm per vehicle design life.  To 

avoid this, we will therefore select a much smaller target false alarm rate of 0.0005 = 

0.05%.   

However, in applying this design target, we need somehow to consider variations 

in the condition of the plant, both between vehicles and for a given vehicle between the 

time that it is new to mature use.  Many monitors exhibit behavior qualitatively similar to 

the Cusum approximation (2), where R decreases roughly exponentially as the condition 

of the plant μ becomes less negative, moving from “as new” towards “worst acceptable”.  

Because of this, we shall assume that only about half of the units spend any appreciable 

amounts of time near “worst acceptable”, and that the probability of a false alarm for the 

other half can be ignored.  Thus we will set the design target for the false alarm rate as 

=1π (0.000 5)/0.5 = 0.001.   

We will assume that the input signals to the monitor are independent normally 

distributed observations with mean μ  and standard deviation σ.  The probability that a 

single independent observation will exceed the threshold h is therefore 

 p = Φ[( μ  – h)/σ],   (3)  

where Φ[.] is the cumulative distribution function (cdf) for the normal distribution. 
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For an alarm that triggers on the kth observation in a row exceeding a threshold, 

Feller [16, p. 324] gives the following expressions:   
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for p from (3).  We include the formula for the variance of the run length, T, because it 

shows that when p is small, i.e., when the condition of the plant is good, the standard 

deviation of T is approximately equal to the mean.  This is a property of the exponential 

distribution and helps justify its use in this context.  Thus for good plants (small p’s), we 

will assume that the run length distribution is approximately exponential.   

As noted above, we require the false alarm rate to be at most π1 = 0.001.  Since 

run length distributions for good plants are approximately exponential, this means that 

Pr{false alarm in t1} = Pr{T < t1} = ( )[ ]Rt1exp1 −−  1π≤ .  After some algebra this 

inequality can be written as 

 R > {t1 / [ – ln(1 – π1)]}.    

When 1π  is small, which will be the case for this application, )()1ln( 11 ππ −≅− .  Thus 

this inequality is virtually equivalent to  

 R > (t1 / π1).   (5)  

Note that expression (5) applies to any monitor that has approximately an exponential run 

length distribution including the Cusum, the EWMA, and k-in-a-row.  Note further that 
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for our example with t1 = 100,000 miles and π1 = 0.001 the lower bound on the 

theoretical R is 100,000,000 miles.  (The absurd magnitude of this number underscores 

the need for accelerated testing.)   

We will now apply (5) to the 2-in-a-row example to find the threshold h.  From 

(4), we have that R = ( ) ( ) 21 pp,,hR +=σμ . If R must be large, p must be small.  Hence  

( ) 21,, phR ≈σμ .  We combine this with (3) and (5) to get  

 1 / { Φ[( μ  – h)/σ] }2 > (t1 / π1).   

After a little algebra we get 
 μ  – σ { }11

1 tπ−Φ  < h.   (6) 

To solve (6) for h we need estimates of μ  and σ .  We will assume for simplicity 

that the data are scaled to have mean μ = 0.  As noted above, we will estimate σ  for the 

observations indirectly from its impact, via (4) and (3), on the average run length data in 

Figure 6.  We do this using maximum likelihood.  For an exponential distribution with 

mean R, the probability density for a run of length t is ( ) RRt−exp  and the probability 

that the run length exceeds a censoring time t c is given by Pr{T > t c} = ( )Rt c−exp .  

Hence the log(likelihood) is  

 l(σ) = log[L(σ)] = ( )[ ] ( )[ ]∑∑ −−

j

j

i

ii hRhRt
 runs, 

censored
 runs,

 all

,,log,, σμσμ .   (7)  

where ),,( σμihR  is as given above.  (Note that we have dropped the superscript “c” used 

to denote censoring times in Figure 6 and collapsed the two subscripts into one.)  For the 

numbers in Figure 6, we found that the likelihood was maximized at σ̂  = 0.977.   

We can get an approximate 95% confidence interval as  
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 { σ  | [–2 log(likelihood(σ))] < χ1 05
2
,.  + [–2 log(likelihood(σ̂ ))]}    (8)  

(McCullagh and Nelder [17, sec. 7.4.1]; Cox and Hinkley [18, 343]).  For this example, 

log(likelihood(σ̂ )) = – 38.27 and χ1 05
2
,.  = 3.84.  Hence we need values of σ  for which 

the log(likelihood) exceeds (– 38.27 284.3− ) = 19.40− .  The easiest way to obtain a 

confidence interval is to make a profile plot of the log likelihood function around the 

maximum, see Meeker and Escobar [5, sec. 8.3.2].  Using this approach we find that an 

approximate 95% confidence interval for σ  is (0.885, 1.064).  

When setting thresholds we want to be on the safe side providing an upper bound 

for the false alarm rate.  Thus because R decreases with σ , we will use the upper bound 

for σ  to obtain a lower confidence bound on the threshold required h.  Hence we will use 

0641.ˆ =σ  in the following calculations.  (If we apply the techniques described here to 

the standard problem of the mean of normally distributed observations with a known 

variance and use only the upper bound, we get the standard 97.5% one-sided confidence 

bound for that problem.  However, since the likelihood (7) is generally not symmetric, it 

is not obvious how to evaluate the actual confidence level of this one-sided limit for σ  

other than to observe that it exceeds 95%, assuming the use of the chi-square 

approximation here is adequate.  A more precise confidence bound could be obtained 

with bootstrapping, as described by Meeker and Escobar [5, ch. 9] and Chernick 19, ch. 

3].)   

Using σ̂  = 1.064 and t1 = 100,000 miles we get π1 / t1 = 810− , so 11 tπ  = 410− .  

Then from (6),  

{ }11
1064.10 th π−Φ−≈  = –1.064 ( 72.3− ) = 3.96. 
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A threshold calculation like this would be based on data from test vehicles that 

presumably were all “good” with 0=μ  throughout the test period.  In practice, there will 

be variability between vehicles coming off the production line causing vehicle-to-vehicle 

variability.  In addition, vehicles age over time without necessarily crossing the worst 

acceptable (w.a.) line of Figure 3.  To take this into account we will consider a w.a. 

vehicle one with 50.=μ .  For the 2-in-a-row rule considered here, the design goal 1π  for 

the false alarm rate should therefore apply for such a vehicle and the lower bound for the 

threshold should be h ≈ )72.3()064.1(5.0 −×−  = 4.46.   

This lower bound for h adjusts for certain issues but not others.  We explicitly 

considered the random variability in the data for the vehicles tested, but it may also be 

desirable to make a further adjustment for the between-vehicle component of variance.  

Other modifications to our procedure would be possible if data were available to model 

how the mean and standard deviation of the observations change with age.  We have 

assumed in the above that (a) the measurement standard deviation remains constant 

throughout the product life and (b) only the mean changes with age.  For certain 

automotive catalyst monitors that rely on counts of “rich-to-lean” and “lean-to-rich” 

transitions in the exhaust gas downstream of the catalytic converter, the standard 

deviation also increases with age:  When the catalyst is new, this number and its standard 

deviation are both quite small.  As the catalyst ages, both the mean and the standard 

deviation increase.  If this pattern could be modeled, more refined estimates of the false 

alarm rate could be developed.  A simple step in this direction might be to monitor the 

square roots of switch counts, recalling that the square root is the traditional variance 

stabilizing transformation for Poisson counts.  Even if these counts were not Poisson, this 
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transformation might still reduce the sensitivity of the standard deviation to changes in 

the mean.   

We have considered a procedure for estimating and controlling the false alarm 

rate.  A separate analysis is needed to determine if the monitor considered in this example 

with a threshold of 4.46 will signal sufficiently fast for a best unacceptable (b.u.) plant.  

We will not discuss this issue, except to note that it may not be appropriate to assume that 

the run length distribution is exponential for bad plants.   

6. DISCUSSION 

Several major automobile manufacturers currently spend large sums every year 

verifying that new vehicles will not have a major false alarm problem.  Unfortunately, 

even with these substantial investments, they still have difficulties obtaining reasonable 

estimates of the false alarm rates for their monitors.  This article has described a 

methodology that will allow organizations to evaluate false alarm rates more precisely 

than in the past, in less time for less money, while simultaneously doing a better job of 

establishing detection thresholds.   

This reduction in cost and time to market requires the user to develop models to 

support the extrapolations discussed above:  Adjusting for the fact that prototypes are 

generally better than worst acceptable (w.a.), adjusting for the difference in duration 

between the test period and the design life, and extrapolating from test to production 

thresholds.  The methodology was described, and a hypothetical example was presented.   

While this theory can be used to support a substantial reduction in the 100,000 

mile testing of new vehicles performed by some automobile manufacturers, it would not 

be wise to eliminate completely the 100,000 mile testing.  This is because an 
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extrapolation methodology that works in some contexts may be inadequate in others.  For 

example, the theory of statistical confidence intervals in expression (8) adjusts for errors 

assuming the model is correct, but may not provide the anticipated protection if the 

model is seriously deficient.   

Decisions regarding the desired magnitudes of both accelerated testing and 

follow-on model verification can be performed by following two recommendations of 

Meeker and Escobar [5]:  (a) Simulate data collection and analysis for a wide range of 

plausible situations for reality and for the test plan.  (b) Use Bayesian reliability theory to 

pool information from similar monitors across a variety of products to obtain tighter 

estimates of the false alarm rate from limited testing.  This will help decision makers 

formally balance costs and risks of a variety of procedures.   

Finally, we acknowledge that changes to existing practices in an organization 

often require substantial justification.  In some organizations, part of this justification 

may include the fact that certain types of accelerated testing are already legally mandated 

for emission control on new automobiles (Mondt [20, p. 37]).   
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Figure 1.  The probabilities of false alarms and excessive delays as functions of the 
threshold, h.  For threshold selection we need to balance these two probabilities.  (a) 
Monitor with clear separation and (b) without clear separation. 
 

threshold, h

Pr{false alarm}
Pr

{e
rr

or
}

Good 
Threshold

0

1

0 2 4 6 8 10
0

1

0 2 4 6 8 10

Pr
{e

rr
or

}

Pr
{e

xc
es

siv
e d

ela
y}

Compromise
Threshold

Pr{false alarm}

Pr
{e

xc
es

siv
e d

ela
y}

threshold, h
(a) (b)

threshold, h

Pr{false alarm}
Pr

{e
rr

or
}

Good 
Threshold

0

1

0 2 4 6 8 10
0

1

0 2 4 6 8 10

Pr
{e

rr
or

}

Pr
{e

xc
es

siv
e d

ela
y}

Compromise
Threshold

Pr{false alarm}

Pr
{e

xc
es

siv
e d

ela
y}

threshold, h threshold, h

Pr{false alarm}
Pr

{e
rr

or
}

Good 
Threshold

0

1

0 2 4 6 8 10
0

1

0 2 4 6 8 10

Pr
{e

rr
or

}

Pr
{e

xc
es

siv
e d

ela
y}

Compromise
Threshold

Pr{false alarm}

Pr
{e

xc
es

siv
e d

ela
y}

threshold, h
(a) (b)



Accelerated Testing of On-Board Diagnostics  

to appear in Quality and Reliability Engineering Ingernational 8/2/05:  28 

 
 

0 1 2 3 4 5

1

h

=

106

μ =

μ = –1

μ =0
μ =1

μ =2

0 1 2 3 4 5

1

h

=

μ =

μ =

μ =0
μ =1

μ =2

109

–2

103

R
= 

A
ve

ra
ge

 R
un

 L
en

gt
h

 

Figure 2. The average run length given by (2) as a function of the threshold h.  
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Figure 3.  The terminology typically used in the OBD context for the range of conditions 

of the plant.  
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Figure 4.  Variations in the Condition of the Plant  
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Figure 5.  Testing 10,000 Miles at Multiple Thresholds  
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Figure 6.  Time to False Alarms from 10,000 Mile Testing at Multiple Thresholds  
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Figure Captions  

Figure 1.  The probabilities of false alarms and excessive delays as functions of the 

threshold, h.  For threshold selection we need to balance these two probabilities.  (a) 

Monitor with clear separation and (b) without clear separation. 
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