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ABSTRACT 

This chapter discusses a duality between the addition of random variables and the 

addition of information via Bayes’ theorem:  When adding independent random 

variables, variances (when they exist) add.  With Bayes’ theorem, defining “score” and 

“observed information” via derivatives of the log densities, the posterior score is the prior 

score plus the score from the data, and observed information similarly adds.  These facts 

make it easier to understand and use Bayes’ theorem.  They also provide tools for easily 

deriving approximate posteriors in particular families, especially normal.  Other tools can 

then be used to evaluate the adequacy of naive use of these approximations.  Even when, 

for example, a normal posterior is not sufficiently accurate for direct use, it can still be 

used as part of an improved solution obtained via adaptive Gauss-Hermite quadrature or 

importance sampling in Monte Carlo integration and Markov Chain Monte Carlo, for 

example.   

One important realm for application of these techniques is with various kinds of 

(extended) Kalman / Bayesian filtering following a 2-step Bayesian sequential updating 
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cycle of (1) updating the posterior from the previous observation to model a possible 

change of state before the current observation, and (2) using Bayes’ theorem to combine 

the current prior and observation to produce an updated posterior.  These tools provide 

easy derivations of the posterior and of approximations, especially normal 

approximations.  Another application involves mixed effects models outside the normal 

linear framework.  This chapter includes derivations of Bayesian exponentially weighted 

moving averages (EWMAs) for exponential family / exponential dispersion models 

including gamma-Poison, beta-binomial and Dirichlet-multinomial.  Pathologies that 

occur with violations of standard assumptions are illustrated with an exponential-uniform 

model.   

 

1.  INTRODUCTION  

Many tools are available for deriving and easily understanding sums of random 

variables.  This chapter presents two comparable (dual) properties of Bayes’ theorem.  

These results concern the “score” and the “information”, where the score = the first 

derivative of the log(likelihood) [3], extended here to include log(prior) and 

log(posterior);  differentiation is with respect to parameter(s) of the distribution of the 

observations, which are therefore the random variables of the prior and posterior.  

Similarly, the “observed information” = the negative of the second derivatives.  With 

these definitions, (a) the posterior score is the prior score plus the score from the data, 

and (b) the posterior observed information is the prior information plus the information 

from the data.  Previous Bayesian analyses have used this mathematics (e.g., [6], [7]) but 
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without recognizing it as having sufficient general utility to merit a name like “Bayes’ 

Rule of Information”.   

These tools provide relatively easy derivations of extended Kalman filter / 

Bayesian filtering approximations and simple Laplace / saddle point approximations for 

mixed models outside the normal linear case (e.g., [16], which includes software for S-

Plus and R).  The adequacy of these approximations can then be evaluated using 

techniques like importance sampling with Monte Carlo integration (including, e.g., 

importance weighted marginal posterior density estimation within Markov Chain Monte 

Carlo [5])  or in low dimensions adaptive Hermite quadrature [8], [22].  The error in the 

simple approximation can then be used to decide if the additional accuracy provided by 

the more sophisticated methods is worth the extra expense.   

By defining score and observed information in this way, we get the same answer 

whether we process n observations into the posterior all at once or one at a time.  We 

therefore focus on the power and simplicity obtainable from “keeping score with Bayes’ 

theorem” and accumulating observed information from prior to posterior.   

In Sections 2 and 3, we derive the properties of interest by factoring the joint 

distribution of observations y and parameters x in two ways:  (predictive) × (posterior) = 

(observation) × (prior):   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )priornobservatioposteriorpredictivejoint
||,

×=×=
×=×= xxyyxyxy ppppp

,
 (1) 

where p( . ) = probability density of observations or parameters as indicated.  In Kalman 

or more general Bayesian filtering applications, we want to track the evolution of the 

unknown or latent parameters x over time through their influence on the observations.  
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The predictive distribution does not appear in the score and information equations, but 

can be useful for evaluating if it is plausible to assume that y came from this model;  if y 

seems inconsistent with that model, the posterior computation might be skipped and other 

action taken [36].   

Beta-binomial, gamma-Poisson, and other conjugate exponential family 

applications appear in Section 2.  In Section 4 (and the appendix), we keep score with 

Bayes’ theorem and apply Bayes’ rule of information with normal priors and posteriors.  

The results are specialized further to normal observations including linear regression in 

Section 5.  Section 6 reviews the connection between Bayes’ and central limit theorems.  

The relationships between alternative definitions of information in statistics are reviewed 

in Section 7, and concluding remarks appear in Section 8.   

 

2.  FACTORING JOINT PROBABILITY AND KEEPING SCORE  

Taking logarithms of (1), letting ( ).l  = ( )[ ].log p  = the logarithm of the 

corresponding probability density, we get the following:   

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )priornobservatioposteriorpredictive
||

+=+
+=+ xxyxy llyll

.
  

R. A. Fisher described the first derivative of the log(density) as the “efficient score” [3], 

[21].  In this sense, the “score” from n independent observations is the sum of the scores 

from the individual observations, and with regular likelihood, prior and posterior, the 

likelihood is maximized or the posterior mode is located where the applicable score (i.e., 

the first derivative of the log density) “balances” at 0.   

In particular, the posterior score is the prior score plus the score from the data:   
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∂ lll ||

,
 (2) 

As explained in the rest of this chapter, expression (2) is a powerful tool for computing 

Bayesian posteriors, especially when a normal distribution is an adequate approximation 

for both prior and posterior or when a normal distribution is used as a kernel for adaptive 

Hermite quadrature or for importance sampling in Monte Carlo.  As a mnemonic device 

to make it easier to remember, it describes how to keep score with Bayes’ theorem.   

Before taking the second derivative, we illustrate the use of (2) in examples.   

Example 1:  Gamma-Poisson.  Consider the gamma-Poisson conjugate pair.  In 

this case, the gamma prior p(λ) = ( )αλβ λβαα Γ−− e1 , so the prior score for λ is ( ) λλ ∂∂ l  

= ( )[ ]{ }βλα −−1 .  Meanwhile, the observation density is ( )λ|yp  = !yey λλ − , so the 

score of the data is ( ) λλ ∂∂ |yl  = [ ]{ }1−λy .  Whence, the posterior score is 

( ) λλ ∂∂ yl |  = ( )[ ]{ }11 1 βλα −− , where 1α  = α + y and 1β  = β + 1.  Since this has the 

same form as the prior score, the posterior is also gamma.  Thus, Bayes’ theorem tells us 

to keep score in the gamma-Poisson model by adding y to α  and 1 to β .   

Suppose now that we have a series of Poisson observations yt with prior 

distribution for λt of ( )1|1| , −−Γ tttt βα .  Then keeping score with Bayes’ theorem tells us that 

the posterior is ( )tttt || , βαΓ  with tt|α  = 1| −ttα  + yt and tt|β  = 1| −ttβ  + 1.  Let’s model a 

possible migration over time in λ = λt with a discount factor θ  (0 < θ < 1), as tt |1+α  = 

tt|αθ  and tt |1+β  = tt|βθ .  Thus, tt |1+α  = ( )ttt y+−1|αθ  = θyt + 1
2

−tyθ  + ..., and tt |1+β  = 

( )11| +−ttβθ  = θ + 2θ  + ... ≅ ( )θθ −1 , if t = 0 is sufficiently far in the past to be 

irrelevant.  In that case, tt |1+β  is constant, and tt |1+α  = ( )θθ −1~
ty , where ty~  = 1

~
−tyθ  + 
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( ) tyθ−1  = an exponentially weighted moving average (EWMA) of the observations yt .  

In essence, Bayes’ theorem tells us to track the gamma scale parameter α by keeping 

score with an EWMA.  For an EWMA application with a somewhat different gamma-

Poisson model, see [20].   

Example 2:  Beta-Binomial.  Consider the beta-binomial pair with observation y ~ 

bin(p, m) and prior p ~ ( )βα ,beta .  The same logic as for gamma-Poisson tells us that 

keeping score with Bayes’ theorem produces a posterior that is beta( 1α , 1β ) with 1α  = α 

+ y and 1β  = β + m – y.  With a sequence yt ~ bin(pt , mt), and prior pt ~ ( )1|1| ,beta −− tttt βα , 

we keep score with tt |1+α  = ( )ttt y+−1|αθ  and tt |1+β  = ( )[ ]tttt ym −+−1|βθ .  If mt = m is 

constant and t = 0 is sufficiently far in the past to be negligible, then tt |1+α  = ( )θθ −1~
ty , 

where ty~  is the EWMA of the observations as before, and tt |1+β  = ( )tym −θ  + 1| −ttβθ  = 

( ) ( )θθ −− 1~
tym .  Yousry et al. [37] discuss the use of this kind of EWMA in 

manufacturing.   

Example 3:  Conjugate Updating an Exponential Dispersion Model.  Examples 1 

and 2 can be generalized to an arbitrary exponential family or exponential dispersion 

model [15], with  

 ( ) ( )[ ] ( ){ } ,,exp,| φφφ yηηyηy cbp −−′=  (3) 

for some φ > 0.  The multinomial distribution with (k+1) categories can be written in this 

form, with the k-vector η being the logistic transformation of the probabilities, so pi = 

( ) ( ){ }∑− ii ηη exp1exp , and with φ y being nonnegative integers whose sum never 

exceeds another integer N.   
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For this distribution, consider a conjugate prior, CP(α, s), on the natural 

parameter η with density  

 ( ) ( )[ ] ( ){ },,exp sdbsp αηηαη −−′=  (4)  

where b(η) is the same as in (3), and s>0 and α are known.   

The gamma-Poisson model of Example 1 can be written in the form (3)-(4) with η 

= log(λ).  The beta-binomial of Example 2 can also be expressed in this form with η = 

log[p/(1−p)].  If the two possible outcomes of the beta-binomial are further subdivided 

binomially to (k+1) > 2 possible outcomes, we get a Dirichlet-multinomial model.   

The “scores” required for (2) are simple:   

 ( ) ( )[ ],| ηηyηηy ddbdld −= φ   
and   (5) 
 
 ( ) ( )[ ].ηηαηη ddbsdld −=   
Then the posterior score is  

 ( ) ( ) ( ) ( ) .| ηηyαηη ddbssdyld φφ +−+=   

If we know from other sources that CP(α, s) is conjugate for (3), this score 

equation gives us the values of the parameters of that conjugate posterior CP(α1, β1), 

where  

α1 = α+κ (y−α) with κ  = φ /(s+φ),  
and   (6) 

s1 = s  + φ.   

For an exponential family with a conjugate prior that can be written in the form 

(3)-(4), these results can be obtained from standard exponential family properties without 

“keeping score” in this way.  Specifically, the product of (3) and (4) gives us the joint 

distribution, also in exponential family form:   
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } .,,exp| sdcbsspp αyηηyαηηy −−+−′+= φφφ  (7) 

Since the prior density (4) must integrate to 1 for any s>0 and α, it must also integrate to 

1 for α1 = α+κ (y−α) and 1s  = s + φ .  This property allows us to easily integrate out η to 

get the predictive distribution:   

 ( ) ( ) ( ) ( ){ }.,,,exp φφφ yαyαy csdssdp −−++=   
or   (8)  
 ( ) ( ) ( ) ( ){ }.,,,exp 11 φyααy csdsdp −−=    

This predictive distribution can be used to evaluate the consistency of each new 

observation with this model.  New observations that seem implausible relative to this 

predictive distribution (8) should trigger further study to determine if these observations 

(a) might suggest improvements to the model or to the data collection methodology or (b) 

are honest rare events that deserve to be incorporated into the posterior with other 

observations or (c) are outliers that should not be incorporated into the posterior.   

The standard application of Bayes’ theorem in this context proceeds by dividing 

the joint density (7) by this predictive density p(y) to get a posterior of the form (4) with 

parameters (6).  However, if we use anything other than a conjugate prior like (4), the 

posterior might not be obtained so easily.  It is precisely for such situations that more 

general tools like keeping score using (2) are most useful;  see also [16].   

Before leaving this example, suppose we have a series of observations yt with 

density (3) and prior CP( 1| −ttα , 1| −tts ).  Then the posterior is CP( tt |α , tts | ), where  

 tt |α  = ( )1|1| −− −+ tttttt αyα κ , (8.5) 



Bayes’ Rule of Information 

ch3-Bayes Rule of Info2.doc 9 / 28   08/02/05 

with κ t = ( )φφ +−1|tts  and tts |  = 1| −tts +φ  (with φ  constant).  Similar to examples 1 and 2, 

we model a possible change in ηt between the current and the next observations with a 

discount factor θ  on s:    

tts |1+  = tts |θ  = ( )φθ +−1| tts  = ( )[ ]φθφθ ++ −− 2|1 tts .   

Moreover, if t = 0 is sufficiently remote to be negligible, we substitute this expression 

into itself repeatedly to get tts |1+  ≅ ( ) +=− sθθφ 1 , say, which makes it essentially 

constant over time.  This gives us the following:     

tt |1+α  = ( )1|1| −− −+ ttttt αyα κ , 
where  
 κ = θ−1 .   (9) 

In sum, a standard EWMA of random variable yt of an exponential family (3) estimates 

the prior location parameter αt of a standard conjugate prior (4) of the location ηt of yt. as 

ηt evolves over time as modeled by the discount factor θ  on the prior information s per 

(8.5).  This provides a deeper understanding of the gamma-Poison and beta-binomial 

models of Examples 1 and 2.   

This exponential family EWMA has been discussed, applied, and generalized by 

West and Harrison [36, sec. 14.2], Grigg and Spiegelhalter [14], Klein [16] and others.  

We will interpret κ  in (9) using “Bayes’ rule of Information” in the next section.  Before 

that, however, we note that this exponential family EWMA can be applied in a quasi-

likelihood context [21], assuming only that (4) with parameter values (6) provides a 

reasonable approximation to the posterior.  We could check the adequacy of these 

assumptions using Markov Chain Monte Carlo (MCMC) with a sample of such data.  

This could be quite valuable in engineering applications where MCMC might be used 
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during engineering design to evaluate whether a much cheaper EWMA would be 

adequate for routine use where MCMC would not be feasible.   

 

3.  BAYES’ RULE OF INFORMATION  

We return now to (2) and take another derivative to get the following:   

 ( ) ( ) ( )
xx
x

xx
xy

xx
yx

′∂∂
∂

+
′∂∂

∂
=

′∂∂
∂ lll 222 ||

.
 (10) 

In this article, we let J( . ) denote the observed information, which we define here as the 

negative of the matrices of second partials in (10).  Then (10) becomes  

 
( ) ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

ninformatio
prior

n(s)observatio
fromn informatio

ninformatio
posterior

|| xJxyJyxJ

.
 (11) 

We call this “Bayes’ Rule of Information”, as it quantifies in many applications 

the accumulation of information via Bayes’ theorem.  If y ~ Nk(x, Σy), we get J(y|x) = 

1−
yΣ .  Since J(y|x) is constant independent of x in this case, it is also the Fisher (expected) 

information, though that is not true in other applications.  Similarly, with a prior x ~ Nk(θ, 

Σx), we have J(x) = 1−
xΣ .  Then (11) tells us that J(x|y) = 1−

xΣ  + 1−
yΣ .  Since we know 

from other arguments that the posterior is also normal, this gives us the posterior variance 

in the form of its inverse, the “information”.   

In the normal case, the information terms in (11) are also called precision 

parameters [4], being the inverse of variances (or covariance matrices);  this case is 

considered further in Section 5.  In Section 4, we assume that the prior is normal and the 

observed information can be adequately approximated by a constant in x, though it may 
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depend on the observation y;  this will support using a normal approximation for the 

posterior.   

With non-normal observations, the information may not be approximately 

constant.  In extreme examples, the observed distribution may even be multimodal.  In 

such cases, the information from the observation(s) [ ( ) xxx|y ′∂∂∂− l2 ] can even have 

negative eigenvalues in a certain region between modes.  Fortunately, many such 

examples are still sufficiently regular that standard results can be used to show that 

observations with indefinite or even negative definite information are so rare that their 

impact on the posterior vanishes almost surely as more data are collected.  If this is not 

adequate, we could handle mixtures by computing the posterior as a mixture and then 

deleting components with negligible posterior mixing probabilities as suggested by West 

and Harrison [36, ch. 12].  (For more on finite mixtures, see [35] and [24].) 

Example 3 (cont.):  EWMA for Exponential Dispersion Data.  What does “Bayes’ 

Rule of Information” tell us about processing data from a (possibly overdispersed) 

generalized linear model (3) with a conjugate prior (4)?  To find out, we differentiate (5):   

 ( ) ( ) ,|
2

⎥
⎦

⎤
⎢
⎣

⎡
′

=
ηη
ηηyJ

dd
bdφ  and ( ) ( ) .

2

⎥
⎦

⎤
⎢
⎣

⎡
′

=
ηη
ηηJ

dd
bds  (12)   

To help build our intuition about this, we use dimensional analysis assuming y 

has “y units”, and η has “η units”.  Then b(η) has (yη) units.  If the exponent in (3) is 

dimensionless, φ  must have ( ) 1−ηy  units.  For a normal distribution, “η units” are “y 

units”, so φ  has 2−y  units.  For a Poisson distribution, y is counts of events, and η is in 

log(counts).  Then φ can be said to have ( ) 1log(count)count −×  units, though counts and 

log(counts) could also be considered dimensionless themselves.  A similar analysis 
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applies to binomial or multinomial observations, where η is in logits and y is either 

counts or proportions;  in the latter case, φ is in ( ) 1logitscounts −×  [or in ( ) 1counts −  if 

logits are considered dimensionless].   

This tells is that ( ) ηη dbd  has “y units”, which it must have since a standard 

exponential family property makes Ey = ( ) ηη dbd .  Similarly, ( ) ( )ηηη ′ddbd 2  has 

( )1−ηy  units.  Then by (12), ( )ηyJ |  has 2−η  units, which it must have, because the 

inverse of observed and Fisher information is variance (of η in this case).  Note also that 

another standard exponential family property has  

 ( ) ( ) .|var
2

1
⎥
⎦

⎤
⎢
⎣

⎡
′

= −

ηη
ηηy

dd
bdφ   

This is the same as ( )ηyJ |  except that the scale factor φ  is inverted, which change the 

units from 2−η  to y2, as required for ( )ηy |var .   

In Section 4, we will assume that the posterior information is always positive (or 

nonnegative definite) and can be adequately approximated by a constant in a region of 

sufficiently high probability near the posterior mode.  In this case, with a normal prior, a 

normal posterior also becomes a reasonable approximation.  Before turning to that 

common case, we first illustrate pathologies possible with irregular likelihood when the 

range of support depends on a parameter of interest.   

Example 4.  Exponential - Uniform.  Pathologies with likelihood often arise with 

applications where the range of support of a distribution involves parameter(s) of interest.  

For example, consider y ~ Uniform(0, eγ).  We take as a prior for γ  a 2-parameter 

exponential with mean 1−ν  and support on ( )∞,0γ ;  this is equivalent to the Pareto prior 



Bayes’ Rule of Information 

ch3-Bayes Rule of Info2.doc 13 / 28   08/02/05 

for eγ considered by Rossman, Short and Parks [30].  We denote this by Exp( 1−ν , 0γ );  

its density is as follows:   

 s,  

where I(A) is the indicator function of the event A.  Then the log(density) is as follows:   

 ( ) ( ) ( )0ln γγννγ −−=l , for ( )0γγ > . (13) 

Also, the density for y is as follows:   

 ( ) ( )γγγ eyIeyf <<= − 0| ,  
so  
 ( ) ( )γγ −=|yl , for ( )γey <<0 . (14) 

Therefore, the support for the joint distribution has γ  > ( ){ }yln,max 0γ .  To keep 

score with Bayes’ theorem, we need the prior score and the score from the data.  We get 

the prior score by differentiating (13):   

 ( ) ( )ν
γ
γ

−=
∂

∂ l , for ( )0γγ > . (15)  

For the data, by differentiating (14) we see that the score function is a constant 

( )1− :  

 ( ) ( )1|
−=

∂
∂

γ
γyl , for ( )γey <<0 , i.e., ( ){ }γ<yln . (16) 

We add this to (15) to get the posterior score:   

 ( ) ( ) ( )11| νν
γ

γ
−=−−=

∂
∂ yl , for ( ){ }( )ylog,max 01 γγγ => ,  

where 1ν  = 1+ν .  By integrating the posterior score over ( )1γγ > , the range of support 

for γ, we find that the posterior is Exp( 1
1
−ν , 1γ ).  Thus, the 2-parameter exponential is a 

conjugate prior for the uniform distribution considered here.  With repeated data 
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collection, 1ν  increases by 1 with each observation pulling ( )γE  = 1
11
−+νγ  ever closer 

to the lower limit 1γ .  (Alternative conjugate priors for this uniform distribution include a 

Pareto and a truncated normal.  Both exhibit pathologies similar to but different from the 

ones discussed here.)   

To get the observed information, we differentiate (15) and (16) a second time to 

get  

 ( ) ( )yJJ |γγ =  = ( ) 0| =γyJ .  

Thus, in this example, the observed information from prior, data, and posterior are all 0.  

Clearly, the posterior gets sharper with additional data collection.  This reflects an 

accumulation of knowledge, even though there is no “observed information” in anything!   

The problems in this case arise because the parameter of interest defines a 

boundary, which means that many of the standard properties of “regular likelihood” do 

not hold.  In this example, both prior and observation densities have a point of 

discontinuity, but the score and information equations (2) and (11) are still valid 

everywhere else.   

If we change the parameterization, we get different pathologies,  For example 

consider y ~ U(0, b) [e.g., with b following a Pareto distribution].  Then the score from 

the data is (−1/b) if 0 < y < b, so the Fisher information defined as the variance of the 

score is 0.  The observed information, however, is not zero;  it’s negative = (−1/b2)!  The 

usual equality between the Fisher information and the expected observed information 

assumes that the order of differentiation and expectation can be interchanged, which does 

not hold in this case.  Fisher information may not be useful in such irregular situations, 

but we can still keep score and accumulate observed information using (2) and (11).   
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A primary area for application of Bayes’ Rule of Information (11) and the 

companion scoring rule (2) is for Kalman filtering, especially nonlinear extended Kalman 

filtering and for more general Bayesian sequential updating ([36];  [26];  [13]).  Such 

cases involve repeated applications of Bayes’ theorem, where the information from the 

data arriving with each cycle accumulates in the posterior, summarizing all the relevant 

information in the data available at that time, which then with a possible transition step 

becomes the prior for the next cycle.   

Another important area of application is for deriving importance weighting 

kernels for Monte Carlo integration with random effects and / or Bayesian mixed effect 

models outside of the normal linear paradigm.  Beyond providing a first order 

approximation, which may not be adequate, they provide a tool for handling relatively 

easily the “curse of dimensionality,” which says roughly that almost everything is sparse 

in high enough dimensions.  For example, Evans and Schwartz [8] note that the volume 

of a k-dimensional unit sphere as a proportion of the circumscribing unit cube, [−1, 1]k, 

goes to zero as k increases without bounds.  Thus, if we try to estimate the volume of this 

sphere via Monte Carlo sampling from a uniform distribution on [−1, 1]k, we would need 

ever larger Monte Carlo samples as k increases just to maintain an fixed probability of 

getting at least one observation in this sphere!   

However, if we know that most of the mass of the distribution is close to the 

coverage of the corresponding normal approximation, most of the k-dimensional pseudo-

random normal variates we generate will also be relevant to the non-normal distribution 

of interest.  This makes importance sampling a simple yet valuable tool for evaluating the 

adequacy of a normal approximation and for improving upon it when it is not adequate.   
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4.  NORMAL PRIOR AND POSTERIOR  

We assume in this and the next sections that the prior and posterior are both 

adequately approximated by normal distributions, ( )00 ,ΣxpN  and ( )11 ,ΣxpN , 

respectively.  Then 

 ( ) ( ) ( )0
1

000 2
1 xxΣxxx −′−−= −cl ,   

and  

 ( ) ( ) ( )1
1

111 2
1| xxΣxxyx −′−−= −cl ,   

where 0c  and 1c  are appropriate constants (relative to x).  We’d like to use (11) to 

compute 1Σ  and (2) to get 1x .  For this, we need following:   

 ( ) ( )[ ]0
1

0 xxΣ
x
x

−−=
∂

∂ −l ;   ( ) ( )[ ]1
1

1
| xxΣ

x
yx

−−=
∂

∂ −l , (17)  

and  

 ( ) ( ) 1
0

2
−=⎥

⎦

⎤
⎢
⎣

⎡
′∂∂

∂
−= Σ

xx
xxJ l ;   ( ) ( ) 1

1

2 || −=⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

∂
−= Σ

xx
yxyxJ l .  (18) 

To keep things simple, we substitute (18) into (11) evaluating ( )xyJ |  at the prior 

mode x = 0x  to get the following (provided only that the likelihood for y is regular):   

 1
1
−Σ  = ( ) 1

00| −+= ΣxxyJ . (19)  

We assume in this section that variations in ( )xyJ |  are so small that a normal 

approximation with mean at the posterior mode 1x  and “information” 1
1
−Σ  per (19) 

provides an adequate approximation to the posterior.  If that is not appropriate, but 

replacing 0x  by 1x  in (19) would produce an adequate approximation to the posterior, 

then we can iterate to obtain 1x  and 1
1
−Σ  simultaneously, as discussed in the Appendix.     
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If we now use (17) to compute the score (2) at the prior mode x = 0x , we get the 

following:   

 ( )10
1

1 xxΣ −− −  = 
( )

⎥⎦
⎤

⎢⎣
⎡

∂
=∂

x
xxy 0|l

 + 0,  

so  

 
( )

⎥⎦
⎤

⎢⎣
⎡

∂
=∂

+=
x

xxy
Σxx 0

101
|l

, (20)  

assuming the posterior information matrix 1
1
−Σ  is of full rank.  Thus, when the normal 

distribution with information 1
1
−Σ  computed via (19) is an adequate approximation to the 

posterior, (20) provides a simple way to obtain the posterior mean 1x .  If in addition the 

observations are linear in x plus normal error, ( )xyJ |  is constant in x, and the posterior 

is exactly normal, as we explain in the next section.   

With a series of observations, possible changes of state between them are 

typically modeled by a random walk, possibly added to a deterministic change.  Special 

consideration must be given to cases where the posterior information 1
1|1

−
−− ttΣ  from the 

previous observation is singular;  we consider this issue further in the next section.   

 

5.  NORMAL OBSERVATIONS 

In this section, we first assume that y ~ Np(x, V) and later that y ~ Nk(Zx, V).  In 

the first case, the log(likelihood) is as follows:    

 ( ) ( ) ( )xyVxyxy −′−−= −1

2
1| ycl .   

Then the score from the data is  

 ( ) ( )xyV
x

xy
−=

∂
∂ −1|l .  (21) 

Taking second derivatives gives us  
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 ( ) 1| −= VxyJ .   

We now substitute this into (19) to get  

 1
0

11
1

−−− += ΣVΣ . (22) 

We substitute (21) into (20) to get  

 ( )0
1

101 xyVΣxx −+= − . (23) 

Now consider applying (22) and (23) n times to a series of n numbers starting with a non-

informative prior 1
0
−Σ  = 0.  We can show by induction that the final 1x  will be the 

arithmetic average of the n numbers or vectors assuming 1−V  is nonsingular.  This 

provides a way to compute an average without storing all the numbers.  Alternating these 

computations with a migration following a normal random walk produces from (23) a 

Bayesian EWMA [12].   

In a regression situation, y ~ Nk(Zx, V), this same analysis gives us  

 1
0

11
1

−−− +′= ΣZVZΣ ,   
and   (24) 
 ( )0

1
101 ZxyVZΣxx −′+= − .  

Kalman filtering can be derived by repeated use of (24), obtaining the prior 

covariance matrix for the each observation 1| −ttΣ  by adding a covariance matrix Wt to 

model a random walk between (t−1) and t  to the posterior 1|1 −− ttΣ  from the previous 

observation [8, Sections 3-6, possibly after some deterministic change].  However, if the 

posterior information from the previous step 1
1|1

−
−− ttΣ  is singular, we must consider this 

fact in handling the migration.  In such cases, we use the information matrix rather than 

the covariance matrix as the primary representation of the variability of the distribution, 
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because it is easier computationally to handle zero information than infinite variance.  Let 

1
1|10

1
00

−
−−

− =′ ttΣQΛQ  denote the eigenvalue decomposition of 1
1|1

−
−− ttΣ  omitting its null 

space.  Then 000 QΛQ ′  = the Moore-Penrose pseudo-inverse of 1
1|1

−
−− ttΣ  and is therefore a 

reasonable representation of the singular covariance matrix 1|1 −− ttΣ .  To get 1| −ttΣ , we 

can’t just add Wt to this 1|1 −− ttΣ , because that would make 1| −ttΣ  nonsingular, ignoring 

the infinite variance in the orthogonal space of Q0.  Instead, we compute 1| −ttΣ  = 

000 QΛQ ′  + 0000 QQWQQ ′′ t  = ( ) 00000 QQWQΛQ ′′+ t  and 1
1|

−
−ttΣ  = 

( ) 0
1

0000 QQWQΛQ ′′+
−

t .  If we do this starting with zero information, 1
0|1

−Σ  = 0, and 

ignore the migration by letting Wt = 0, we can get ordinary least squares regression.   

 

6.  BAYES AND THE CENTRAL LIMIT THEOREM  

Expression (19) relates to a more general result, namely that the sampling 

distribution of maximum likelihood estimators (MLEs) is, under very general regularity 

conditions, approximately normal with covariance matrix being the inverse of the 

information (e.g., [27]).  Even with non-normal observations, ( )xyJ |  (under suitable 

regularity conditions) generally acts like precision parameter(s), being the inverse of 

variance-covariance matrices.  These results are typically derived by writing the vector of 

MLEs as a weighted sum of Fisher’s efficient scores and assuming that variations in 

( )xyJ |  are sufficiently small (and the dominating measure for the prior sufficiently flat) 

that that the posterior is adequately approximated by a normal distribution with 

information 1
1
−Σ  and mean 1x  computed via (19) and (20).  Under suitable regularity 
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conditions, we have exactly this structure in (20) and in the somewhat more general 

situations discussed in the appendix.  In such cases, a Bayesian posterior will generally 

be more nearly normal than either the prior or the score from the data ([1];  [28]).  

Edgeworth correction terms could also be obtained to quantify rates of convergence to 

the central limit theorem, following [29], [32], [33],  and [11], and the relative magnitude 

of such correction terms typically declines with the accumulation of posterior 

information.   

Central limit convergence of MLEs has been proven with otherwise adequately 

behaved multimodal distributions with occasionally negative observed information 

( )xyJ | .  This property rests on the fact that observations with negative information are 

so relatively rare that they disappear almost surely with increasing numbers of 

observations.  Alternatively, finite mixtures in prior and observation distributions can 

often be adequately approximated by the obvious finite mixtures in the posterior, 

dropping all but the dominant components as describe by West and Harrison [27, ch. 12].   

 

7.  ALTERNATIVE DEFINITIONS OF INFORMATION IN STATISTICS 

Several different types of “information” have been defined and used in statistical 

work (see, e.g., [34]).  The Fisher information is a tool of choice for developing 

approximate sampling distributions for maximum likelihood estimates, as discussed in 

the previous section.  The observed information is also sometimes used for this purpose.   

Shannon [31] argued that the information contained in a “message” (observation) 

y is the number of bits required to produce the equivalent reduction in uncertainty, which 

is ( )[ ]{ }yfE 2log− .  For example, if y is the outcome of the toss of an unbiased coin, 
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then ( )[ ]{ }yfE 2log−  = ( )[ ]5.0log5.0 2−  + ( )[ ]5.0log5.0 2−  = ( )2log2  = 1.  Important 

results in modern communication theory are based on Shannon’s concept of information.   

Using natural rather than base 2 logarithms, Kullback and Leibler [17] (see also 

[23]) quantified the information in an observation y for discriminating a probability 

density ( )yf  from ( )yg  as ( ) ( )[ ]{ }fgfE |log yy ;  they called this a measure of 

“distance” or “divergence” between f and g.  With ( )δxx +,I  = 

( ) ( )[ ]{ }xδx|yx|y |log +ffE , Kullback and Leibler showed that under suitable 

regularity conditions, the Fisher expected information was twice the second derivative of 

their “divergence” with respect to a perturbation:   

 ( )[ ]xx|y |JE  = 2 ( )
⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

+∂
δδ
δxx,I2

.    

To help educate our intuition about this, consider y ~ ( )Σx,N .  Then  

 
( ) ( )[ ] ( )[ ] [ ] [ ]{ }

[ ] .5.05.0
2
1

11

11

δΣδyxδΣδ

xyΣxyδxyΣδxyδxx

−−

−−

′=−+′=

−′−−+−′+−=+

E

E,I

.
    

Since the Fisher information in this context is 1−Σ , we find that the Fisher information 

here is precisely 2 ( )[ ]δδδxx, ′∂∂+∂ I2 , consistent with Kullback and Leibler’s general 

result.   

For a more general review of these and other types of “information” used in 

statistics, see [34], [10], [19], and [9].   

In sum, several different concepts of “information” have been discussed in the 

statistics literature, with each serving different purposes.  The focus of this article has 
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been Fisher’s efficient score and the observed information, which provide powerful tools 

for deriving exact and approximate posterior distributions.   

 

8.  SUMMARY  

We discussed Bayes’ rule of information generally in (11) and in approximate and 

exact normal applications in (19), (22) and (24).  We also showed how keeping score 

with Bayes’ theorem provides easy derivations of the posterior for the gamma-Poisson, 

beta-binomial, and exponential-uniform conjugate pairs.  These tools have long been 

used when prior and observations are normal (e.g., [25] and [18]), but without substantive 

consideration of their more general utility.  Yousry et al. [37] describe the use in quality 

control of an EWMA for binomial data with a beta prior.  Their derivation is similar to 

the discussion in Example 2, Section 2 above, but without the convenience of using the 

concept of Fisher’s efficient score or of Bayesian sequential updating, promoted as a 

general foundation for monitoring [13].   

The results here are related to but different from the traditional frequentist result 

that the Fisher information for the joint distribution of two independent random variables 

is the sum of the Fisher information for each marginal [19, sec. 5a.4].  For example, with 

non-normal observations where normal distributions provide acceptable approximations 

to prior and posterior, it is sometimes appropriate to further simplify the posterior 

information computation in (19) by replacing the observed information ( )xyJ |  with its 

expectation over y given x.  If we do this twice starting from a noninformative prior with 

J(x) = 0, we get the result mentioned by Rao [17, sec. 5.a4].   
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In many cases, a normal distribution provides an adequate approximation to the 

posterior, even with nonlinear or non-normal likelihood.  When it is not convenient to 

compute derivatives analytically, the score function and information from the data can be 

estimated by numerical differentiation.   

After the posterior mode and information ( 1x , 1
1
−Σ ) are found by iterating with 

(27) and (28), the adequacy of the normal approximation might be checked using 

importance sampling, computing, e.g., the difference between l(x |y) and the normal 

approximation at a sample of pseudo-random normal deviates following the 

approximating normal distribution.  Of course, we must also assure ourselves that the 

posterior does not have another substantive mode that might be completely missed with 

this importance sampling.  If substantive discrepancies are found, they can be reported 

with profile confidence intervals, marked to highlight the discrepancies between the 

profile and the normal approximation.  Certain likelihoods (e.g., mixtures;  see [35] or 

[24]) are known to have potential difficulties.  These cases might be identified by 

excessive variability in the observed information from the data.  Once identified, special 

procedures can be developed appropriate to the situation.   
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APPENDIX:  NON-CONSTANT OBSERVED INFORMATION 

In this appendix, we develop an iteration to an approximate normal posterior 

( )11 ,ΣxpN  from a normal prior ( )00 ,ΣxpN  and either non-normal data or data with 

normal errors nonlinearly related to the parameters of interest x.  We shall not prove here 

anything about the convergence of our iteration;  such a proof would follow the lines of 

comparable results on convergence of MLEs. 
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The iteration will ultimately require keeping score at the posterior mode x = 1x , 

rather than the prior mode as with (20), substituting (17) into (2) to obtain the following:   

 0 = 
( )

⎥⎦
⎤

⎢⎣
⎡

∂
=∂

x
xxy 1|l ( )01

1
0 xxΣ −− − . (25) 

Since 1x  is initially unknown, we expand the score from the data in a Taylor 

approximation about an arbitrary point x = ξ, beginning from ξ = 0x , as follows:   

 
( ) ( ) ( )( )ξxξxyJ

x
ξxy

x
xxy

−=−⎥⎦
⎤

⎢⎣
⎡

∂
=∂

=⎥⎦
⎤

⎢⎣
⎡

∂
=∂

1
1 ||| ll .  

We substitute this into (25) to get the following:   

 ( ) ( )( )ξxξxyJ
x

ξxy
−=−⎥⎦

⎤
⎢⎣
⎡

∂
=∂

= 1||0 l ( )01
1

0 xxΣ −− − . (26) 

We begin each iteration by evaluating (11) at x = ξ using (18) as follows:   

 ( ) ( ) 1
0

1
1 | −− +== ΣξxyJΣ ξ . (27)  

By substituting this into (26), we get the following:   

 ( )
( ) ( ) 0

1
01

1
1 || xΣξξxyJ

x
ξxyxΣ −− +=+⎥⎦

⎤
⎢⎣
⎡

∂
=∂

=
l

ξ . (28) 

Each iteration involves solving (28) for 1x .  If the difference between 1x  and ξ is not 

sufficiently small, we replace ξ by the latest estimate of 1x  in (27) and (28) and repeat 

the operation;  if convergence is not obviously monotonic, then we may employ some 

form of step size control, replacing ξ by an appropriate linear interpolation between the 

previous ξ and the latest estimate of 1x .   


