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A Bayes-Adjusted Cumulative Sum (Cusum)  

 

ABSTRACT 

This article shows how the Girshick-Rubin (1952) monitor can be rewritten as a 

traditional one-sided Cusum plus a correction term that generally provides fairly 

consistent bias and is often quite small.  For an abrupt jump from null to alternative 

hypotheses, the log odds for the transition is essentially a cumulative sum of 

log(likelihood ratio) with a floor given by the log(hazard odds).  This explains the 

previously reported virtual equivalence between Girshick-Rubin and a Cusum.  We also 

generalize Girshick-Rubin to non-i.i.d. observations and non-constant hazard.  With zero 

hazard, it becomes the log(odds) formulation of Bayes’ theorem, which is also Wald’s 

sequential-probability ratio test (SPRT).  Potential applications include On-Board 

Diagnostics (OBDs) of emissions controls, required on all new automobiles sold today in 

many countries.  It also provides an important new tool for improving preventive 

maintenance schemes by combining reliability information with current data on the 

condition of the plant (i.e., system monitored);  in applications with increasing hazard, 

these new preventive maintenance programs could reduce the total cost of operating and 

maintaining equipment.   

 

KEY WORDS:  Monitoring;  Bayesian Sequential Updating;  Preventive maintenance;  

Discrete hazard rate;  On-board diagnostics (OBDs);  Total Productive Maintenance 

(TPM);  Discrete reliability;  Fast Initial Response (FIR)   

 



Bayes-Adjusted Cusum  

Bayes-Adjusted Cusum4b.doc   08/03/05 2

1.  INTRODUCTION  

The increasing computerization of products from simple to highly complex 

provides many new opportunities and demands for sophisticated diagnostic monitoring 

systems.  Prime examples are provided by On-board diagnostics (OBDs) to detect 

malfunctions in emission controls required by law in new automobiles sold today in the 

US, Canada and Europe and soon in many other countries (e.g., Mondt 2000, p. 144;  

CARB 1997).  Other examples include modern heart pacemakers and implantable 

defibrillators that monitor both the patient and the device itself (Gunderson 2000):  They 

monitor the patient’s condition and intervene only when necessary, and they sound an 

audible alarm if the battery is low or the electrical connections seem corroded.  The 

techniques could also be used in medical applications to alert appropriate people of a 

change in a patient’s condition, good or bad, suggesting a potential need to change 

therapy or shortening the time required to evaluate new medical procedures (Steiner et al. 

2000).   

Box and Luceño (1997, p. 233) describe a country whose national defense 

includes two kinds of radar:  One omnidirectional, the other focused narrowly in the 

directions from which an enemy would most likely attack.  They compare the 

omnidirectional radar to a Shewhart chart and the focused radar to a Cusum of Fisher’s 

efficient score or log(likelihood ratio) tuned to a specific anticipated change.  The 

massive quantities of data now being collected provide substantial opportunities for 

increased sophistication in automatic monitoring for many different kinds of changes.  

Suppose for example that a change in mean indicates an actual process change while an 
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increase in variability suggests metrology problems.  Monitors could be programmed to 

notify different people depending on the nature of a change detected.   

A general principle for designing such monitoring systems is provided, we 

believe, by the two-step Bayesian sequential updating procedure outlined by Graves et al. 

(2001);  see Figure 1:  Step 1 uses Bayes’ theorem to incorporate new data into current 

knowledge of the condition of the system being monitored (called the “plant” for 

consistency with the control theory literature).  Step 2 models a possible transition in the 

condition of the plant before the next observation.  For a plant that deteriorates following 

a normal random walk observed with normal error, this leads to Kalman filtering, a 

special case of which is an exponentially weighted moving average (EWMA), as 

explained by Graves et al. (2001) and Graves, Bisgaard and Kulahci (2002a, b).  Section 

5 below illustrates how models of increasing hazard can be introduced naturally into Step 

2, providing an important new method for medical applications and for Total Productive 

Maintenance (TPM) programs.   

(Figure 1 about here) 

In this article, we consider an abrupt jump from an “in control” condition H0 to an 

alternate state H1;  H1 may describe one of many possible “out of control” conditions.  

From this perspective, Shewhart-type charts are tuned to detect single, isolated events 

such as outliers, while other charts such as Cusums, EWMAs and Kalman filters look for 

sustained signals.   

Girshick and Rubin (1952) considered Bayesian sequential updating with 

independent, identically distributed (i.i.d.) observations and a constant hazard rate for a 

transition from a simple (completely specified) hypothesis H0 to another simple 
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hypothesis H1.  They modeled this as a two-state, recurrent Markov chain with a cost 

model whose optimization involved a non-intuitive iteration;  this was generalized to a 

continuous time stochastic process by Shiryaev (1963).  Kenett and Zacks (1998) discuss 

examples and provide software to compute average run lengths for monitor design.   

In this article, we generalize Girshick-Rubin to non-i.i.d. observations with non-

constant hazard.  This generalization opens up many new areas of potential application, 

including the on-board diagnostics (OBDs) of plants using data whose behavior changes 

dramatically with the dynamics of the plant and whose susceptibility to failure may 

change both with mode of use and with age, as illustrated by the example in Section 5 

below.   

The basic derivation and an i.i.d. example appear in the next section.  With zero 

hazard, Bayesian sequential updating can be written as a cumulative sum (Cusum) of 

log(likelihood ratio) that is the log odds formulation of Bayes’ theorem.  With non-zero 

hazard, the log odds for the transition can never go below the log(hazard odds), and the 

resulting iteration closely approximates a one-sided Cusum.   

This derivation also suggests a relationship between the threshold of Page’s one-

sided Cusum and the increase in posterior log(odds) for H1 against H0;  this relationship 

is discussed in Section 3.  This is followed by a brief discussion of costs and run lengths 

in monitor design.  An extensive example involving non-identically distributed 

increments and non-constant hazard appears in Section 5.  The difficulties of generalizing 

these results to composite hypotheses and to situations where the distribution of 

observations from H1 depends on the time of fault onset are briefly mentioned in Section 

6.  This is followed by concluding remarks.   
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2.  NON-I.I.D. OBSERVATIONS, NON-CONSTANT HAZARD 

We wish to generalize the Girshick-Rubin (1952) procedure to non-i.i.d. 

observations and non-constant hazard.  In particular, suppose we observe random 

variables yt that have a density fi,t = fi,t( yt | yt–1, yt–2,...), i  = 0, 1 for H0 and H1 (where f0,t 

and f1,t are densities with respect to a common dominating measure and may vary with t).  

Typically, H0 represents “good” and H1 “bad”, and we will use those terms in this article, 

though that is not required.   

Consider a random variable t0 = the change point from H0 to H1.  We further 

assume that the fi,t’s are completely specified, which also implies that f1,t does not depend 

on t0.   

Let ht = hazard rate = Pr{ H1 at t +1 | H0 at t }.  Since f1,t does not depend on t0, 

the Bayesian posterior can be summarized in a single number, Pr{ H0 at t | y1, ..., yt }.  In 

typical applications, we want to know when this change has occurred so appropriate 

action can be taken.   

Step 1 of the two-step iteration of Figure 1 requires us to compute the posterior 

probability of H0 at time t given the prior, gt–1.  In this context, Step 1 (Bayes’ theorem) 

gives us the following:   

Pr{ H0 at t | y1, ..., yt } = ( )1,11,0

1,0

1 −−

−

−+ tttt

tt

gfgf
gf

.   

Step 2 allows for a possible transition, giving us the prior for the next observation given 

the past as follows:   
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                            gt = Pr{ H0 at (t + 1) | y1, ..., yt }   

                = (1 – ht) Pr{ H0 at t | y1, ..., yt } = 
( )

( )1,11,0

1,0

1
1

−−

−

−+
−

tttt

ttt

gfgf
gfh

, (1) 

where g0 = the initial prior probability that observation y1 is collected under H0 .  We 

assume that this is strictly positive.  Otherwise, with g0 = 0 expression (1) says gt = 0 for 

all t.  But g0 = 0 means that we are certain that the transition of interest has already 

occurred, and we will therefore take the action before the first observation is collected.   

More generally, if an observation is highly informative, either f0,t >> f1,t  or f0,t << 

f1,t .  In either of these cases, expression (1) essentially discards the past immediately, 

giving us gt ≅ ( )th−1  in the first case and gt ≅ 0 in the second, almost regardless of 1−tg .  

At the other extreme, if an observation is completely noninformative, f0,t = f1,t , so gt = 

( ) 11 −− tt gh .  When all observations are noninformative, gt = ( )∏ − thg 10  = a 

deterministic march to 0 following the reliability distribution.  Except in cases where the 

difference between f0,t and f1,t is always negligible {so gt ≅ ( )∏ − thg 10 }, the influence 

of g0 on gt will over time become dominated by the information contained in the data and 

in the reliability distribution.   

We typically think of gt as Pr(“good”| ...), though it might be something else.  We 

focus on the prior of H0 given the past, because we are usually more concerned with the 

future than the past;  if for example we planned to discontinue use before the next 

observation, we might not even collect yt .  In most cases, the hazard rate will be so small 

that the difference obtained by introducing (1 – ht) into (1) will be small;  however, in 

certain applications with rapidly increasing hazard, this difference could be important;  

see the case study discussed with Figure 6 below.   
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In the following, we will convert gt into log(odds).  In so doing, we will obtain a 

cumulative sum with a floor given by the log hazard odds and with the initial prior log 

odds being a fast initial response (FIR) parameter (Lucas and Crossier 1982).  This helps 

us understand FIR:  it is essentially equivalent to specifying g0 = the initial prior on the 

condition of the plant.   

With one important restriction, nuisance parameters could be handled by tracking 

them using the same 2-step Bayesian sequential update cycle of Figure 1, then applying 

this formulation to the “predictive distribution” after integrating out the nuisance 

parameters.  The important restriction is the assumption that the fi,t’s do not depend on t0, 

which will not be strictly true when the posterior distribution of the nuisance parameters 

depends on the change point, t0.  However, Menke and Maybeck (1995) and Eide and 

Maybeck (1996) seem to get good results with essentially this procedure ignoring the 

impact of the change point on the posterior (see also Graves, et al. 2001, 2002a, b).   

To turn (1) into a Cusum, we rewrite it in term of Bt = ( ) tt gg−1  = the odds for 

H1 (“bad” in certain applications) at time (t + 1), as follows:   

Bt = [ ht + (f1,t /f0,t)Bt – 1 ] / (1 – ht) 
or  
 Bt = Ht + ztBt – 1,  (2)  

where Ht = ht /(1 – ht) = hazard odds, and zt = ( f1,t /f0,t)/(1 – ht) = adjusted likelihood ratio.  

Without the transition (i.e., if ht = 0), this is merely the odds formulation of Bayes’ 

theorem:  The posterior odds is the likelihood ratio times the prior odds.   

Girshick and Rubin converted (1) into a recursion for Zt = ( )[ ] ttt Hhg −− 111  = 

( ttt HBz 1− ).  By definition, 1−tB  = { }11 1 −−tg  = ( ){ }111 111 −−− +−− ttt Hhg  = 

{ } 11 1 −− + tt HZ .  Whence,  
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 Zt = ( )( )tttt HHZz 111 −−+ . (3)  

Girshick and Rubin obtained the constant-hazard simplification of this:  Zt = ( )11 −+ tt Zz .  

A simple recursion such as (3) can be quite valuable for computations.  However, we 

have been unable to find a simple interpretation for Zt .  Moreover, the presence in (3) of 

the factor ( )tt HH 1−  suggests that any meaning that might be assigned to a fixed point 

like Zt = 1 could change with non-constant hazard.  We shall therefore ignore Zt .   

Computationally, (2) [and (3)] often lead to numeric difficulties, which can be 

avoided by using logarithms.  Let βt = log(Bt) = log(odds for H1), ηt = log(Ht) = 

log(hazard odds), and ζt = log(zt) = log[likelihood ratio(t)] – log(1 – ht) = “adjusted 

log(likelihood ratio)”.  Then (2) can be rewritten as  

 βt = ηt + log[1 + (ztBt – 1 / Ht) ],  

 = ηt + log[1 + exp(Δt)], (4)  

where Δt = ζt + βt – 1 – ηt.  But ζt exceeds log[likelihood ratio(t)] by [– log(1 – ht)] > 0 as 

long as 0 < ht < 1.  In most practical applications, ht is so small that log(1 – ht) ≅ (–ht) ≅ 

0, which makes ζt essentially the log(likelihood ratio).   

To relate (4) to something more concrete, note that if the observations (yt |Hi) ~ 

N(μi, σ 2), i = 0, 1, then  

 ζt = ( ) ( ) ( )t
ti hyd −−
−

− + 1log1 1

σ
μ  ~ ( ) ( )[ ]221 ,1log5.01 dhdN t

i −−− + ,  (5) 

where d = ( ) σμμ 01 − , and ( ) 210 μμμ += .  We return to this case later.   

An alternative to (4) can be obtained by factoring (ztBt–1) out of (2) to produce the 

following:  

 β t = ζt + β t – 1 + log[1 + exp(–Δ t)]. (6)  
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If we use (4) when 0 > Δ t = (–|Δ t|) and (6) when 0 < Δ t = |Δ t|, we get 

 β t = max{ ηt, ζt + β t – 1 } + log[1 + exp(–|Δ t|)]. (7)  

For any Δ t,  

0 < log[1 + exp(–|Δ t|)] < log(2).   

Except when |Δ t| is small, this term will be negligible.  In that case, (7) is a cumulative 

sum with a floor at ηt  and with β0 = the initial prior log odds for H1 being a fast initial 

response (FIR) parameter, as mentioned following (1).  If the data are only marginally 

informative, |Δ t| will tend to be small under H0 , but getting larger after the transition.  If 

the data are nearly always highly informative, |Δ t| will tend to be large even under H0 .  In 

this latter case, the “Bayes-adjustment term” log[1 + exp(–|Δ t|)] will nearly always be 

negligible.   

Expression (7) can be written in a more familiar form by letting *
tQ  = β t  – ηt = 

the excess over the log hazard odds of the log odds for H1.  However, with non-constant 

hazard, *
tQ  seems to lose its utility.  In such cases, we will focus on β t , as in the example 

discussed with Figure 6 below.  Before considering that case, however, we will explore 

the simplifications obtainable from using *
tQ  with constant hazard, ht = h, so *

tQ  = β t  – 

η .   

Subtracting η from both sides of (7), we get the following:   

 *
tQ  = max{ 0, *

1−tQ  + ζ t } + log[1 + exp(–| *
1−tQ  + ζ t |)]. (8)  
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As mentioned above, the term log[1 + exp(–| *
1−tQ  + ζt |)] will be negligible except 

when |Δt| is small.  If we drop it from (8), and replace *
tQ  with +

tQ  to signify the change, 

we get 

 +
tQ  = max{ 0, +

−1tQ  + ζt }. (9)  

This is essentially the standard one-sided Cusum of log(likelihood ratio) due to Page 

(1954) except for the “log(1 – ht)” adjustment included in the definition of ζt just before 

(4).   

Figure 2 presents a typical simulation comparing (8) and (9) with 20 observations 

changing from H0 to H1 at t = 11.  In this, we assume h = 0.001, Hi:  yt ~ N(μi, 2σ ), σ  = 

1, i = 0, 1, μ0 = 0, and μ1 = 1.  The log(likelihood ratio) in this case is given by (5).  This 

makes +
tQ  a standard one-sided Cusum except for the “adjustment” ( )[ ]h−− 1log  to the 

log(likelihood ratio) in ζt.  Since ht = 0.001, this adjustment is ( )[ ]h−− 1log  ≅ 0.001, 

which is not visually detectable in Figure 2.   

(Figure 2 about here) 

Four vertical scales are provided in Figure 2.  The first is the “natural” Cusum 

scale for *
tQ  and +

tQ , starting at 0.  But *
tQ  is the excess in the log odds for H1 (βt) over 

the hazard odds (η), recalling the definition of *
tQ  preceding (8).  We use this to obtain 

the second scale, per βt  = *
tQ  + η, where η = ( )[ ]hh −1log  = ( )999.0001.0log  = 

( )91.6− ;  the log(hazard odds) is a floor for the log odds for the transition.  The third and 

fourth scales in Figure 2 simply transform the log odds for H1 into odds, Bt , and 

probability, (1 – gt).   
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The behavior here is typical of what we have seen in other simulations with 

different values of μ1 and differing numbers of observations before and after the change:  

*
tQ  and +

tQ  tend to go up and down together, possibly after an initial drift to an fairly 

predictable bias generated by the Bayes-adjustment term ( )[ ]ttQ ζ+−+ −
*

1exp1log  in 

(8).  When the plant is good, the movements in *
tQ  and +

tQ  are nearly identical (except 

possibly for an initial drift);  the similarities only increase after the plant becomes bad.  

The effect of the Bayes-adjustment term is displayed graphically in Figure 3.   

(Figure 3 about here) 

For the normal example introduced with (5), Eζt = ( ) ( )hdi −−− + 1log5.01 21  

under Hi , i = 0, 1, with d = ( ) σμμ 01 − .  Thus, after the transition (under H1), the 

traditional Cusum +
tQ  increases on average ( )hd −− 1log5.0 22 σ  for each observation; 

meanwhile, the Bayes-adjusted Cusum *
tQ  increases slightly faster initially but 

converges quickly to this growth rate.  In the case considered in Figure 3, this asymptote 

was for practical purposes reached in one observation.   

To understand better the bias apparent in Figure 2, we computed the means of 

Monte Carlo trajectories for *
tQ  and +

tQ  and their difference for a variety of 

combinations of d and h.  Under H0, all began with a drift towards an asymptote, 

E( *
∞Q |H0) or E( +

∞Q |H0).  We found that the logarithms of these two asymptotes were 

approximately linear in θ0 = log(–δ0), where δ0 = E0(ζ t /d) = ( ) dhd −−− 1ln5.0  = 

expected increment rescaled to unit variance under H0 (assuming d > 0).  Analysis of the 
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means of 20,000 simulated trajectories at each of 17 different levels for d between 0.15 to 

3 and with h positive but computationally 0 produced the following:   

log( *
∞Q /d |H0) = e+−−−−− 4

0
3
0

2
00 017.0125.0351.0290.1367.0 θθθθ , 

(10) 
log( +

∞Q /d |H0) = e+−−−−− 4
0

3
0

2
00 049.0341.0993.0634.2083.2 θθθθ ,  

where θ0 = ( )0log δ− .   

The simulated differences E[ ( )+− tt QQ* |Hi], i = 0, 1, clearly approached 

asymptotes with increasing t.  Figure 4 presents this bias for t = 500 under H0  and for t = 

250 after an abrupt jump to H1 .  The following was fit to these data under H0 :   

E{log ( )[ ]dQQ tt
+−* |H0} =  

           4
0

3
0

2
00 114.0470.0766.0584.1608.0 δδδδ ++++ . (11a) 

(Figure 4 about here) 

Under H1 , the three sets of simulations with d < 0.2 had not quite converged 

during the period simulated after the transition (250 independent observations), so they 

were excluded from the fitting process.  The following model was fit to the remaining 14 

points:   

 E{log ( )[ ]dQQ tt
+−* |H1} = 2

11 037.0717.0664.0 δδ −− .   (11b) 

Expressions (11) can help us in various ways, e.g., to modify threshold selection 

procedures developed for Page’s one-sided Cusum so they can be used with the Bayes’ 

Cusum.  Expressions (10) and (11) should be considered preliminary, as some of the 

simulations upon which they are based exhibited a subtle non-Markovian behavior that 

we could not explain;  see the Appendix.   
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Before discussing threshold selection in more detail, we consider briefly how this 

analysis changes if the hazard rate is zero:  First, if the hazard is constant, it disappears 

from (3).  If it is zero, it disappears from (2), and then the logarithm of (2) becomes the 

log-odds formulation of Bayes’ theorem:   

 βt = ζt + βt – 1.  (12)  

In words, the posterior log odds (βt) is the prior log odds (βt – 1) plus the log likelihood 

ratio (ζt).  This is a traditional two-sided Cusum.  It is clearly the correct answer if we are 

testing to evaluate an unchanging property of nature, as noted by Wald (1947).   

However, this is different from the Girshick-Rubin criterion (3) without the 

hazard factor.  To understand this, note that zero hazard turns ( )tt HH 1−  in (3) into the 

indeterminate form (0/0) in (3) while also turning ηt into (– ∞) and introducing either 

(∞– ∞) or similar nonsense into (4) and (6)-(8).   

But monitoring applications look for changes, which imply a non-zero hazard.  In 

such situations, a traditional two-sided Cusum, (12), is inappropriate except when used 

with a time-varying threshold such as a traditional V-mask.  But a two-sided Cusum is 

mathematically and in usage equivalent to two one-sided Cusums, where the slope of the 

“V” in the V-mask is related to the difference in expectations between H0 and H1 of the 

log(likelihood ratio).  As previously noted, the zero level for Page’s one-sided Cusum is 

provided by the log(hazard odds), and with zero hazard, this floor is at negative infinity.   

In sum, if the hazard rate is truly zero, a two-sided Cusum performing a Bayesian 

formulation of a Wald sequential test (12) is appropriate.  Meanwhile a non-zero but 

constant and small hazard rate calls for a monitor that is virtually equivalent to a one-

sided Cusum (9).   
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In sum, the comparison in this section of the Bayes-adjusted Cusum and Page’s 

one-sided Cusum analysis helps us understand previous reports, e.g., by Srivastava and 

Wu (1993, p. 665), who said that with low thresholds and high false alarm rates, the 

Bayes’ procedure was better than the traditional Cusum.  With higher thresholds, 

Srivastava and Wu agreed with the earlier simulation comparison by Roberts (1966), who 

found the Cusum and the Bayesian approaches essentially equivalent.   

We next consider selection and interpretation of a detection threshold.   

 

3.  CUSUM THRESHOLD AND INCREASE IN POSTERIOR LOG(ODDS) 

An obvious decision criterion for Bayesian monitoring is to set an alarm when the 

posterior probability of H1 exceeds a threshold, which may be tied to the economics of 

the problem (e.g., Girshick and Rubin 1952).  This translates into a threshold for the 

posterior log odds for H1, βt.  With constant hazard, this is equivalent to setting a 

threshold for our Bayes-adjusted Cusum, *
tQ  = βt – η ;  this threshold on *

tQ  becomes the 

“increase” in log odds for a bad plant (βt) over the log hazard odds (η) required to set an 

alarm.  This equivalence is illustrated in Table 1 for a constant hazard rate of 0.01.  To 

deepen our understanding of this connection, suppose we are collecting one sample per 

day from a sewage treatment plant and preparing a Cusum chart of the result.  And 

suppose that ζt = log( f1,t /f0,t) – log(1 – h) in (8) has standard deviation of 1 and mean 

( 5.0− ) if the system is good and (+0.5) if bad.  Suppose also that the plant has an upset 

(goes bad, from H0 to H1) roughly once every 100 days, which means it has roughly a 

constant hazard rate of 0.01.  Then from Table 1, we see that a threshold for *
tQ  of 4 is 
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roughly equivalent to deciding to declare an upset when the posterior probability of H1 is 

0.36 or greater [ignoring the bias from the Bayes-adjustment term].  If the model is 

correct, then this 0.36 reflects the proportion of plants with comparable histories that are 

bad;  it is not (merely) a subjective probability.   

(Table 1 about here) 

By comparison, a standard Cusum chart might put the threshold for +
tQ  at 4, 

which would have an Average Run Length (ARL) of roughly 350 to a false alarm and 8.5 

to a valid alarm (e.g., Bissell 1969).  Ignoring the bias modeled by (11), this is roughly 

equivalent to declaring an upset when the posterior probability of H1 is 0.36.  In a real 

application, we would want to adjust these numbers to consider the bias per (11).  

However, the point here is the conceptual equivalence, so we will not bother now with 

this refinement.   

 

4.  COSTS AND RUN LENGTHS 

In many applications, the expected cost of a delay to detection will be 

proportional to the average run length (ARL) to an alarm after the plant (i.e., the system 

being monitored) transitions from H0 to H1.  Meanwhile, the expected cost of a false 

alarm might be proportional to the probability of an alarm under H0.  Obviously, 

increasing the threshold increases the ARL (under H1) while reducing the false alarm 

rate.  Therefore, selecting a threshold implies a certain assessment of the cost of a false 

alarm relative to the cost of a delay of one more observation.  This gives us three 

equivalent ways to select a threshold for a Cusum / Bayes’ monitor:   
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(a) Select a posterior probability [or log(odds)] for H1 above which an 

malfunction is declared.   

(b) Select a threshold to balance some characteristics of the run length 

distributions for good and bad systems.   

(c) Specify the cost of a false alarm relative to the cost of waiting one 

more observation before declaring a transition to H1. 

In practical monitor design, it may be wise to evaluate all three perspectives before 

making the final choice of threshold.   

This three-part equivalence assumes the model is correct, which often is not the 

case.  For example, a monitor may be designed ignoring serial dependencies in the data, 

because the application may not justify the additional expense of modeling them.  The 

final evaluation and selection of a threshold might be made by extrapolating from run 

length data collected using artificially low thresholds in prototype systems, as suggested 

by Bisgaard et al. (2002).  These thresholds would automatically adjust for model 

inadequacies such as serial dependence.  Meanwhile, the threshold implied by this 

equivalence for the posterior probability of H1, ignoring serial dependence and model 

inadequacies, might be ridiculously close to 1;  in such cases, the formally computed 

posterior is not a realistic assessment of the relative frequency of plants with comparable 

histories that are bad.  This does not negate the value of the monitor, only the posterior 

probability interpretation of it.   
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5.  AN EXAMPLE WITH NON-IDENTICALLY DISTRIBUTED INCREMENTS 

AND NON-CONSTANT HAZARD  

Box et al. (2000) outline an “8-step process” for developing an on-board 

diagnostic (OBD) to detect malfunctions in emissions controls required on all new 

automobiles sold today in the US, Canada and Europe.  This process begins with defining 

“good” and “bad”, collecting data on each, and building models so H0 and H1 can be 

defined.  This “8-step process” is now routinely taught in workshops for engineers 

organized by the Society of Automotive Engineers.  A standard example in these 

workshops is a “defective paper helicopter”, i.e., one with excessive wing loss.  Paper 

helicopters have a long history as a tool for teaching experimental design (Box 1992), 

including as an illustration of sequential experimentation in a response surface 

investigation (Box and Liu 1999).   

The problem of designing an OBD to detect excessive wing loss becomes difficult 

(and similar to more substantive applications) by assuming that the wing area cannot 

easily be measured directly but must instead be inferred from the fall time from a known 

height with a known “passenger load” (number of staples in the body of the paper 

helicopter).  The automotive engineers in our SAE workshop assure us that this is quite 

similar to their applications, except that paper helicopters can be tested in minutes with a 

miniscule budget rather than months and many thousands of dollars to build and test 

prototypes.   

This “plant” produces noisy data whose distribution depends on operating 

conditions (number of staples and fall height) as well as the condition of the plant 

(percent wing loss).  The resulting diagnostic incorporates non-identically distributed 
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increments, which are similar to what engineers might want to use to diagnose, for 

example, misfires from deficits in angular acceleration, where the deficit depends on the 

fuel load, and the noise level seems to be related to the engine speed (Graves, Bisgaard 

and Kulahci 2002b).   

Our “good” paper helicopter is 2.54 by 10.16 cm. (1 by 4 inches) with (a) the 

wings occupying the top half and (b) the bottom half of the body folded vertically in 

thirds where staples are affixed.  “Deterioration” is simulated by removing between 0 and 

100% of the wings.  Data on which to build a diagnostic were collected from a 3 x 3 

experiment with (0, 2, and 4) staples by (0, 50, and 100%) wing loss, augmented by a 2 x 

2 with (1 and 3) stapes by (25 and 75%) wing loss.  This allowed us to estimate cubics 

and quartics along with a full parabolic and some higher order interactions.  This design 

allowed us to look for nonlinearity, suspected from earlier tests conducted with 

workshops held from Turin, Italy, to Pasadena, California.   

Two paper helicopters for each of these 13 designs were prepared and dropped 

twice from three different heights, 2.53, 4.06, and 5.96 m. with the fall time being 

recorded.  In addition to these 156 “calibration” drops, we also completed prototypes so 

we had a full factorial in (0, 20, 25, 40, 50, 60, 75, 80, 100%) wing loss by (0, 1, 2, 3, 4) 

staples, which were all dropped once after the “calibration” drops at each height.   

The “calibration” data set was used to estimate a regression model, whose results 

were incorporated into a diagnostic, which was evaluated using the “confirmation” data 

set.  Selected predictions from the model with standard 95% confidence limits appear in 

Figure 5.  The local minimum appearing in Figure 5 between 85 and 100% wing loss may 

to us possible lack of fit.  However, we think the local maximum appearing between 0 
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and 30% wing loss is probably real.  Most importantly, the model predictions at 40 and 

60% wing loss are likely sufficiently accurate for present purposes.  The 40 and 60% 

numbers were selected as “worst acceptable” (H0) and “best unacceptable” (H1;  see Box 

et al. 2000).  A competent engineer might use a model like this and ignore the apparent 

lack of fit unless there was strong justification for the additional investment required to 

develop a better model.   

(Figure 5 about here) 

Figure 6 presents two Bayes-adjusted Cusums based on this model:  one with 

constant hazard and the other with a discrete Weibull.  A *.zip file downloadable from 

“www.prodsyse.com” contains a drawing of the paper helicopters used for this study plus 

an Excel file with the experimental data used to estimate the model fits summarized in 

Figure 5 and an additional 131 observations collected with gradually increasing levels of 

wing loss;  this Excel file also includes the Cusum computations for Figure 6.  In these 

additional observations, wing loss jumps from 25 to 40% at observation 45, then to 50% 

at observation 66, to 60% at observation 78, and 75% at observation 93.  The first 100 of 

these 131 additional observations are plotted in Figure 6.  The last 31 observations, not 

plotted, continue this steep upward trend.   

(Figure 6 about here) 

For Figure 6, we assumed ht = ( ) ( )[ ] ( )tStStS 1+−  = 

( )[ ] ( ){ }cc tt ττ −+− 1exp1  with characteristic life τ = 100 and with shape c = 1 and 3 

for the constant hazard and the increasing failure rate lines.  This is the discrete hazard 

rate for the Weibull distribution (Lawless 1982, p. 10;  Kalbfleisch and Prentice 1980, pp. 

35-36;  Salvia and Bollinger 1982;  it is different from the “discrete analogue to the 
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Weibull” described by Padgett and Spurrier 1985).  In discrete applications such as the 

present, the hazard rate is actually a probability;  continuous hazards must be converted 

to probabilities as in this example.   

Figure 6 is labeled with 3 vertical axes.  The scale is linear in the axis on the left, 

the “naive log odds for bad”, which is translated into nonlinear “naive odds for bad” and 

“naive Pr(Bad)” on the right [ignoring the bias (11)].  We say “naive”, because the model 

assumes an abrupt jump from 40 to 60% wing loss, but we are applying it to data 

collected with a gradual drift in wing loss from 0 to 75%.  The lines drawn would 

represent probabilities in the relative frequency sense if the points plotted actually 

represented a plant as modeled, beginning with 40% wing loss changing abruptly to 60% 

at a random point according to a probability distribution whose discrete hazard is the 

floor under Bayes-adjusted Cusum.  Since the malfunction mechanism here was not the 

single abrupt jump modeled, the computed “posterior log odds, odds and probabilities” 

are labeled “naive” as a reminder of the violation of the assumptions.  However, for many 

purposes, we would expect the Bayes-adjusted Cusum to be as robust as the traditional 

one-sided Cusum (see Box and Luceño 1997), though the posterior probability 

interpretation may not be as robust.   

Both the constant and Weibull (c  = 3) lines in Figure 6 are assumed to start with 

a prior log odds for bad of 0, simulating a cheap repair that is only effective half the time.  

This shows clearly how the “head start” or “fast initial response” of Lucas and Crossier 

(1982) is related to the prior log odds for the plant being “bad”.   

The Bayes-adjusted Cusum seems to linger around 0 until observations 14 and 15 

pull it down to its hazard rate floor, consistent with expression (7).  At that point, the 
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hazard rate line for Weibull (c  = 3) is substantially below that for constant hazard with 

the same characteristic life, so it makes it easy to see the difference.  From there, the 

Bayes-adjusted Cusum tends to mostly follow the hazard rate until a change in the 

condition of the plant starts pulling it upwards fairly consistently, as we see in Figure 6.   

 

6.  IF THE H1 DISTRIBUTION DEPENDS ON THE CHANGEPOINT 

While the present discussion has focused on simple hypotheses, the derivation 

here works with incompletely specified hypotheses, cusumming the log of the ratio of the 

predictive (marginal) densities with parameters estimated sequentially as in Kalman 

filtering, provided that (a) f1,t does not depend on t0 , and (b) we can ignore the question 

of when we can start accumulating information about unknown parameters of f1,t .   

For such situations, West and Harrison (1999) recommend “Bayes’ factors”, 

whose logarithms are the one-sided Cusums just described [without the Bayes’ 

adjustment, like (9)].  Eide and Maybeck (1996) and Menke and Maybeck (1995) call 

similar techniques “Multiple Model Adaptive Estimation”;  see also Graves et al. (2001, 

sec. 7).   

For a situation where the first condition is not met, consider tool wear with t0 = 

the time at which the hardened surface of a tool is worn through, after which the tool 

wears much faster.  In such case, the posterior cannot be summarized in one number such 

as gt in (1).  However, Bayesian sequential updating might still provides a theoretical best 

procedure, evaluated using, e.g., Markov Chain Monte Carlo (MCMC;  see, e.g., Roberts 

and Casella 1999 or Carlin and Louis 1998).  Such evaluations could help us evaluate the 

adequacy of simpler methods.   
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A superficially attractive alternative is provided by generalized likelihood ratio 

(GLR) monitors studied by Lai (1995), Basseville and Nikivorov (1993) and others.  

These procedures compute cumulative sums of ratios of fragments of likelihood 

maximized over (H0 ∪ H1) vs. H0, similar to generalized likelihood ratio procedures that 

have been primary tools of frequentist statistical methods since the 1928-1938 pioneering 

work of Neyman and Pearson (1966;  see also Lehmann 1986).  Recent simulation work 

by Chang and Fricker (1999) discovered that Cusums and exponentially weighted 

moving averages (EWMAs) “perform surprisingly well compared to the GLR test, 

usually outperforming it.”  These results invite the speculation that GLR procedures may 

lose power by optimizing over implausible alternatives.  When history is relevant to 

predicting the future, we might expect that reasonable Bayesian procedures might 

outperform the excessive conservatism of minimax-type GLR procedures.   

 

7.  DISCUSSION  

In this article, we looked for an abrupt jump from H0 to H1.  We found that when 

the hazard rate is low and relatively constant, Bayesian sequential updating is reasonably 

well approximated by a Cusum of log(likelihood ratio);  for a recent overview of the 

traditional Cusum literature, see Hawkins and Olwell (1998).  If the hazard rate is not 

constant (i.e., the distribution of time to a problem is not exponential), then the theory 

presented here provides a natural way to improve diagnostic performance through the use 

of that information.  This could be quite valuable for designing preventive maintenance 

procedures that combine periodic data collection with reliability models or for 

biostatistical protocols that combine current observations for changes in a patient’s 
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condition with hazard rates estimated from other patients with comparable conditions and 

superficially similar therapies.  This holds promise for developing procedures that 

outperform any procedure that considers only one source of information.   

The literature on preventive maintenance includes various techniques for using 

reliability information (e.g., Kardon and Fredendall 2002).  Gertsbakh (1977) describes 

how to determine optimal inspection intervals for preventive maintenance.  However, we 

know of no previously published techniques for combining noisy data from imperfect 

inspections with reliability information;  a Bayes-adjusted Cusum provides, we believe, a 

useful way to address this common situation.  We believe that it is simple enough, 

especially with modern computers, that it could become part of routine programs for 

“Overall Equipment Effectiveness (OEE)” and “Total Productive Maintenance (TPM)” 

(Productivity Development Team 1999).   

If instead of an abrupt jump from H0 to H1, we assume a normal random walk in a 

state space observed with normal error, Bayesian sequential updating produces Kalman 

filtering (Graves et al. 2001), a special case of which is a Bayesian exponentially 

weighted moving average (EWMA), whose design combines reliability information with 

measurement noise models based on studies of gage repeatability and reproducibility 

(Graves, Bisgaard and Kulahci 2002a).   

When looking for abrupt jumps between hypotheses H0 and H1 where at least one 

is incompletely specified, the obvious solution of running parallel sequential Bayes 

procedures (e.g., Kalman filters) has been tried with apparent success, as discussed in 

Section 6 above.   
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With Cusum increments that are not identically distributed, such as the paper 

helicopters of Section 5 with varying “passenger loads” and drop heights, an acceptable 

monitor should perform well over a range of usage patterns.  Variations in the usage 

pattern complicate the design problem:  Environmental protection agencies might 

consider noncompliant an OBD that did not function properly for drivers who never 

drove over 40 kilometers per hour (25 miles per hour), even if it performed perfectly for 

the other 99% of the population.   

Engineers could deal with this problem by considering different usage patterns, 

e.g., distributions of drop heights and passenger loads.  They would then try to select 

thresholds that provide a sufficiently quick response with an acceptable false alarm rate 

under all scenarios.  Many applications such as legally mandated OBDs on emissions 

controls in automobiles mandate a maximum delay from the onset of a “worst 

acceptable” condition to an alarm.  The image of Figure 5 suggests that an acceptable 

diagnostic would be much easier to achieve with many staples and a high drop height 

than with no staples and a low drop height:  The difference between “good” and “bad” is 

large in the first case and small in the second.  Any threshold low enough to trigger an 

alarm sufficiently quickly with repeated short drops and zero staples might have an 

unacceptable false alarm rate for some usage pattern.   

In sum, we believe we have described a new tool that can improve solutions for a 

variety of problems while providing a Bayesian interpretation for traditional Cusum 

techniques.  In conjunction with related work described, e.g, by Graves et al. (2001) and 

Graves, Bisgaard and Kulahci (2002a, b), we believe this helps to establish the 2-step 
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Bayesian sequential updating cycle of Figure 1 as a general foundational principle for 

solving monitoring problems.   

 

APPENDIX  

No precision estimates are given with (10) and (11) because we saw a non-

Markovian behavior in the supporting simulations that we could not explain.  Since 

modeling these asymptotes and the bias is tangential to the main thrust of this article, we 

briefly describe our concerns in this appendix and leave their resolution to future 

research.   

Specifically, for certain values of θ0, the averages of large numbers of simulated 

trajectories using both the Bayes-Adjusted (8) and Page’s one-side (9) Cusum starting 

from the asymptotes in (10) initially fell quickly then climbed gradually back to the 

models (10).  Several efforts were made to identify possible bugs or non-random 

behavior of the pseudo-random number generators, to no avail.  The simulations used in 

(10) and (11) were done in S-Plus 6.1 but were repeated in R 1.9.1 (downloadable from 

www.r-project.org) using two different pseudo-random number generators different from 

each other and from the one used by S-Plus.  Similar simulations were done in Microsoft 

Excel with result that suggested the same non-Markovian behavior but were not 

conclusive due to the smaller numbers of simulations run.  A final check included a 

completely independent programming effort that reproduced the aberrant behavior for the 

Page Cusum (9) in 16 lines of R code given below.   

Even with the unexplained non-Markovian behavior, it seems that (10) and (11) 

display the correct behavior qualitatively even if their numerical precision is less than 



Bayes-Adjusted Cusum  

Bayes-Adjusted Cusum4b.doc   08/03/05 26

what might be desired.  Ignoring this question, the standard deviations of residuals for the 

expressions in (10) and (11) were se = 0.004, 0.010, 0.003, and 0.002, respectively;  all 

coefficients were highly significant, with the largest of the individual p-values being 

0.009.   

This phenomenon can be replicated easily in S-Plus or R using the code for 

Page’s Cusum (9) given below.  This code could easily be modified to simulate the jump 

to H1 , consider the hazard rate explicitly and also compute Qs.t.d = ( )dQt
*  and the bias 

from the same random numbers;  these modifications are not included here as they make 

it slightly more difficult to see the curious non-Markovian behavior:   

simCus5 <- function(Ezt.d=-0.1, Qp0.d=3, maxTime=400, nSims=20000){ 

  Qp.d.mean <- rep(NA, maxTime) 

  Qp.t.d <- rep(Page0.d, nSims)  

  for(i in 1:maxTime){ 

    z.t <- (Ezt.d + rnorm(nSims)) 

    Qp.t.d <- pmax(0, Qp.t+z.t) 

    Qp.d.mean[i] <- mean(Qp.t) 

  } 

  Qp.d.mean 

} 

plot(simCus5(Qp0=4.5)) 
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Figure 1.  Bayesian Sequential Updating 

Step 1.  Observation:  Updating knowledge
using Bayes’ Theorem

Step 2.  Transition, including possible
deterioration
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Figure 2.  One-Sided and a Bayes-Adjusted Cusum Simulations 
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Figure 3.  Bayes-Adjusted and Traditional Cusum Iteration 
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Figure 4.  Steady-State Excess of Bayes-Adjusted over Page’s One-Sided Cusum 
(mean of 20,000 simulated series for each of 17 scenarios;  see text)   
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Figure 5.  Predicted Fall Time vs. Wing Loss, Height, and Number of Staples  
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Figure 6.  Bayes-Adjusted Cusum with Constant and Weibull (Shape = 3) Hazard;  
Characteristic Life = 100 Drops  
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Table 1.  Equivalent Thresholds between a Bayes-Adjusted Cusum 
and the Bayes’ Posterior 

 
 Bayes-Adjusted Bayes Posterior with Hazard 0.01
 Cusum log(odds) odds probability 
   3 – 1.60        0.20 0.17 
   4 – 0.60        0.55 0.36 
   5    0.40        1.50 0.60 
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Figure Captions  

Figure 1.  Bayesian Sequential Updating 
 

Figure 2.  One-Sided and a Bayes-Adjusted Cusum Simulations 

 

Figure 3.  Bayes-Adjusted and Traditional Cusum Iteration 
 

Figure 4.  Steady-State Excess of Bayes-Adjusted over Page’s One-Sided Cusum 
(mean of 20,000 simulated series for each of 17 scenarios;  see text)   
 

Figure 5.  Predicted Fall Time vs. Wing Loss, Height, and Number of Staples  
 

Figure 6.  Bayes-Adjusted Cusum with Constant and Weibull (Shape = 3) Hazard;  
Characteristic Life = 100 Drops  

 


