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We provide three successive generalizations of the Bayesian EWMA of section 3 

for fault isolation.  Section 5 describes a Kalman filter providing an on-going 

recalibration of metrology, distinguishing and estimating drift in the intercept from that of 

the slope.  Section 6 generalizes this for fault isolation in a nonlinear physical system (an 

automotive air intake system).  When trying to isolate too many faults, this methodology 

is found to encounter problems of numerical stability, due perhaps to lack of regression 

leverage for estimation of the components of the state vector.  (Kalman filtering can be 

described as regression analysis performed one observation at a time, gracefully 

discounting the past.)  These problems can be overcome in at least some cases by running 

different Kalman filters in parallel, as discussed in section 7.  Concluding remarks for this 

report appear in part III.   
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5.  KALMAN FILTERING FOR FAULT ISOLATION  

In this section, we consider Bayesian sequential updating for fault isolation.  The 

development follows the procedure outlined in Figure 3.1, generalizing the EWMA of 

section 3 to estimate multiple parameters from a univariate response.  This is important 

for monitoring because with complex systems such as an automobile, a manufacturing 

facility, or a human body, many things can go wrong.  It is therefore desirable not merely 

to detect a fault but to isolate it as well:  What disease do we need to treat?  Which 

component of the automobile should be replaced?  Which piece of equipment in the 

production line should be adjusted and how?   

In some cases, fault isolation is more important than fault detection.  Suppose, for 

example, that an on-board diagnostic (OBD) tells a car owner to fix the emission controls.  

Suppose further that the owner spends $200 to fix a problem that s/he can neither smell, 

feel, nor see, apart from an OBD light on the instrument panel.  In this context, what 

happens if the OBD light comes back on shortly after a repair?  Obviously, it depends on 

the customer, but some customers may simply ignore the light, refusing to attempt 

another repair when a substantive expense failed to fix an apparent problem that did not 

affect drivability.  In such a context, fault detection with improper fault isolation may be 

worse than useless, because it encourages non-compliance and contempt for the law.  

Since OBDs for emission controls are legally required on all new automobiles sold today 

in the US, Canada and Europe, this issue is a part of daily life in much of the developed 

world today.   

Something similar can happen in manufacturing.  In fabrication of integrated 

circuits, it is a waste of time to tell engineers and operators that something in the process 
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is responsible for a 1 percent yield loss, unless you can isolate, for example, a particular 

piece of equipment that needs maintenance of a certain type.  However, a 1 percent 

improvement in yield can be worth millions of dollars per year in many wafer fabs today.  

The money involved in these applications can justify substantial effort to design and 

implement sophisticated monitoring systems.  In some cases, fault isolation can be 

performed effectively by secondary diagnostic procedures after a fault has been detected;  

we discuss here incorporating fault isolation with OBDs.   

In this section, we assume that the condition of the plant evolves as a 

multidimensional random walk as follows:   

 xt+1 = xt + wt, where wt ~ Np(0, W). (5.1) 

The information on this state is obtained from a noisy univariate measurement as follows:   

 yt = Ht xt + vt, where vt ~ N(0, 2
vσ ), (5.2) 

where Ht  can in general be any p-dimensional row vector.   

To fix ideas, consider the problem of continually reestimating calibration or 

sensitivity parameters in a measurement process.  Figure 5.1 depicts a sequence of pairs 

of observations (ut, yt), where u1, u2, ..., u20 are simulated samples whose value was 

established by concurrent measurement by a more costly reference test, and y1, y2, ..., y20 

were obtained using a production test.  The figure suggests a linear relationship between 

ut and yt, as  

 yt = b0,t + b1,t ut + vt, where vt ~ N(0, 2
vσ ). (5.3)  

However, this linear relationship appears not to be constant but rather seems to be drifting 

gradually upwards over time.   
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Figure 5.1.  Estimating Sensitivity Parameters in a Measurement Process  
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yt = b0,t + b1,t ut + vt, σv = 0.1 
b0,t = – 0.042 + 0.03t

b1,t = 1.113,  t = 1, 2, ..., 20

Observe a subtle upward
drift in the intercept from
t = 1, 2, ..., 19, 20.  

Simulated Calibration
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yt = 
observation

 
 

The state space for the sensitivity parameters xt = (b0,t, b1,t)’ is depicted in Figure 

5.2, with the simulated true but unknown condition of the plant marked as a straight 

horizontal line labeled xt drifting to the right.  The Bayesian sequential updating / Kalman 

filtering procedure described later in this section was applied to the observations in Figure 

5.1 to determine the Bayesian prior mean at each point in time, xt|t–1 plotted in Figure 5.2;  

we see that this prior mean wanders around but ultimately follows the simulated true 

condition xt on its journey to the right of Figure 5.2.   

We suppose that previous experience with this hypothetical production test 

suggests erratic performance with occasional unacceptable nonlinearity when xt had either 

|b0,t | > 0.4 or |b1,t  – 1| > 0.4, but that the system has performed acceptably when xt has 

been in the region |b0,t | < 0.25 and |b1,t  – 1| < 0.25.  In the “undefined zone” with 0.25 < 

|b0,t| < 0.4 or 0.25 < |b1,t – 1| < 0.4, the plant performance has not always been acceptable 
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but also was rarely bad enough to justify the expense of an immediate repair.  In this 

context, we call the lines |b0,t | = 0.25 and |b1,t  – 1| = 0.25 “worst acceptable”, while |b0,t | 

= 0.4 and |b1,t  – 1| = 0.4 are called “best unacceptable”.  To balance the risk of false alarm 

with that of excessive delay, we have selected the lines |b0,t | = 0.35 and |b1,t  – 1| = 0.35 as 

detection thresholds:  When xt|t–1  crosses either of these lines, a repair is ordered.   

Figure 5.2.  Detecting and Isolating a Measurement Sensitivity Fault  
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This procedure offers several advantages over traditional calibration.  Many 

instruments and sensors experience gradual calibration drift, and a continual recalibration 

as described here can improve their performance.  Indeed, this procedure can out-perform 

traditional calibration procedures that adjust the sensitivity parameters using only a few 

test samples collected at one time.  This procedure can operate on, say, one test sample 

per week, combining the results of all previous test samples in an appropriate way, 

discounting older history as calibration drift makes it less relevant.   



Foundations of Monitoring  

© 2001 Graves and Bisgaard  5-5 Foundations5-Kalman2.doc:  11/26/01 

Moreover, the methodology described here can be applied in other, similar 

contexts and can be generalized to plants with analytical redundancy where the laws of 

physics can be used to check each of several sensors against the others.  Without using 

analytic redundancy, engineers protect against faulty sensors by installing multiple copies 

of the same sensor.  This drives up the per-unit cost and the total weight.  The latter can 

be a substantial concern in aircraft design and may be unacceptable in military aircraft 

where a bullet that disconnects a sensor in a wing may simultaneously disconnect back-up 

sensors.   

In Figure 5.2, we see that the Bayesian prior estimate of the condition of the plant 

xt|t–1 for t = 1, 2, ..., 21, leaves the “acceptable” region after observation 1−t  = 12, just 

before observation t = 13.  It enters the “unacceptable” region before observation 16 only 

to return to the “undefined” zone before observation 17;  it becomes “unacceptable” again 

just before observation 19.  This follows approximately the simulated unknown condition 

xt that leaves the “acceptable” region with observation 10 and enters the “unacceptable” 

region for observation 15.  When xt|t–1 crosses the threshold (dotted lines) on Figure 5.2 

before observation 15, a malfunction is declared and the production test equipment is 

removed for maintenance.  By examining Figure 5.2, the standards department would 

know the following:  (a) The equipment suffers from an offset problem of magnitude 

approximately 0.47, and (b) it is neither hypersensitive nor dull.  In some applications, 

this information can reduce the cost of the repair.   

In many applications, this kind of continual reestimation of sensitivity parameters 

can provide higher quality measurements from cheaper sensors than would otherwise be 
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possible, and the fault-isolation information provided by the estimated xt|t–1 can 

substantially reduce the cost of maintenance.   

As explained below, these estimates assume that the plant evolves following a 

simple random walk, per (5.1).  A minor generalization of the present theory could track a 

deterministic drift much better, but would not be able to follow as well a random walk.   

 

5.1.  Bayesian Updating for Fault Isolation  

Bayesian sequential updating begins by assuming that our knowledge of the state 

of the plant at time t can be summarized in a normal prior:   

 (xt | Dt–1) ~ N(xt|t–1, ΣΣΣΣt|t–1), (5.4) 

where Dt–1 = { yt–1, yt–2, ... y1, x1|0, ΣΣΣΣ1|0}.  For t = 1, the distribution of (xt | Dt–1) is just 

N(x1|0, ΣΣΣΣ1|0), the distribution of the condition of the plant at first use;  in many 

applications, this can be estimated from an appropriate external reference population.  For 

t > 1, this is the output of Step 2 in the iteration of Figure 3.3.   

This is processed as described in step 1 of Figure 3.1 into the posterior N(xt|t, ΣΣΣΣt|t) 

using substeps 1.1.  preparing and 1.2.  updating, as we now explain.   

Step 1.1.  Preparing.  This is further divided into three substeps:  (1.1a) predictive 

distribution, (1.1b) posterior variance, and (1.1c) Kalman gain.  

Step 1.1a.  Predictive Distribution.  We combine the prior with the observation 

process (5.2) and integrate out the unknowable xt to get the predictive distribution as 

follows:   

 ( yt | Dt–1) ~ N( ft, 2
1| −tyσ ),  

where  
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 ft = Ht xt|t–1,  (5.5)  

since the expected value of the sum in (5.2) is the sum of the expectations, and  

 2
1| −tyσ  = tttt HΣH ′−1|  + 2

vσ ,  
using  

var(Ht xt|t–1 | Dt–1) = ( )[ ] ( )[ ]{ }111 || −−−
′−− ttttttttttt DDEDEE xHxHxHxH   

= ( )[ ] ( )[ ]{ } ttttttttt DDEDEE HxxxxH ′′−− −−− 111 ||   

= [ ][ ]{ } ttttttttt DE HxxxxH ′′−− −−− 11|1|  = tttt HΣH ′−1| . 

Step 1.1b.  Posterior Variance.  To derive the posterior distribution, we work with 

the probability density functions.  Basic concepts of conditional probabilities give us  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),priornobservatioposteriorpredictivejoint
||,|||, 1111

×=×=
== −−−− tttttttttttt DpypDypDypDyp xxxx

  

where p( . | . ) = probability density.  But Dt = {yt, Dt–1}, so ( )1,| −ttt Dyp x  = ( )tt Dp |x .  

Taking logarithms, letting ( ).|.l  = ( )[ ].|.ln p , we get the following:   

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).priornobservatioposteriorpredictive
|||| 11

+=+
+=+ −− tttttttt DlylDlDyl xxx

 (5.6) 

We will use first and second derivatives of this expression relative to xt :   
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Recall that the observed information is defined as the negative of the second 

derivative of the log(likelihood), and the Fisher information is the expected value of the 
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observed information.  Let ( ).|.J  denote the observed information matrices = the 

negative of the matrices of second partials in (5.8).  Then (5.8) becomes  

 
( ) ( ) ( )

.ninformatio
prior

n(s)observatio
fromn informatio

ninformatio
posterior

||| 1







+





=






+= −tttttt DD xJxyJxJ
 (5.9) 

We find this result quite useful if only to help us remember and understand 

Kalman filtering / Bayesian sequential updating.  In the normal case, this information is 

also the precision parameter(s), being the inverse of the variance (or covariance matrix).  

For a discussion of this result beyond the immediate context, see the appendix in section 

6 below.   

We assumed in (5.4) that the prior was normal and in (5.2) that the observation 

was normal.  Therefore,  

 ( ) ( ) ( )1|
1

1|1|11 2
1| −

−
−−− −′−−= tttttttttt cDl xxΣxxx ,   

and   (5.10) 

 ( ) ( )2
22

1| ttt
v

ytt ycyl xHx −−=
σ

.   

where 1c  and cy are appropriate constants.  By examining (5.6), we see that the posterior 

( )tt Dl |x  must be a constant minus a paraboloid in xt , since the predictive distribution 

does not contain xt .  This makes the posterior also a paraboloid in xt  and therefore normal 

as well.  We therefore write  

 ( ) ( ) ( )tttttttttt cDl |
1
||2

1| xxΣxxx −′−−= − ,  (5.11) 

with appropriate choices for c, tt|x  and 1
|

−
ttΣ ;  we will use (5.7) and (5.8) to determine xt|t 

and 1
|

−
ttΣ .  From (5.10) and (5.11), we get the following:   
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Substituting (5.13) into (5.9), we get  

 ttvtttt HHΣΣ ′+= −−
−

− 21
1|

1
| σ . (5.14)  

In words, this says that the posterior (Fisher) information is the prior information plus the 

information about xt contained in the data.   

For further discussion of this, see West and Harrison (1999, pp. 639-640), Press 

(1972, p. 77), the appendix in section 6 below, or in a univariate context, DeGroot (1970, 

p. 167).  

If we similarly substitute (5.12) into (5.7), we get  

 ( )[ ]ttttt |
1
| xxΣ −− −  = ( )ttttv y xHH −′−2σ  ( )1|

1
1| −

−
− −− ttttt xxΣ .   

This holds for all xt and in particular for xt = 0:    

 tttt |
1

| xΣ−  = ttv yH′−2σ  + 1|
1

1| −
−

− tttt xΣ .   

Assuming 1
|

−
ttΣ  is nonsingular, we get from this  
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 xt|t = { }tvttttttt y2
1|

1
1||

−
−

−
− ′+ σHxΣΣ ,  (5.15)  

Step 1.1c.  Kalman Gain.  The weight on the last observation yt in (5.15) is called 

the Kalman gain and will be denoted as follows:   

 Kt = 2
|

−′ vttt σHΣ .   (5.16) 
From (5.14), we see that  
 tvttttt HHΣΣ ′′−= −−−

−
21

|
1

1| σ .  

We substitute these last two expressions into (5.15) to get  

 xt|t = ( ){ }tvttttvttttt y2
1|

21
||

−
−

−− ′+′− σσ HxHHΣΣ   

 = ( )1|1| −− −+ ttttttt xy HKx   (5.17)  

= ( )ttttt fy −+− Kx 1| , 
using (5.5).   

For plants with constant observation and transition variances, all the computations 

of substep 1.1 can be done offline except for the mean of the predictive distribution.  

With or without those offline computations, if these preparations are done prior to the 

arrival of the latest observation, yt , it can shorten slightly the time required to update our 

knowledge of the state of the plant.  This may be useful with certain real-time controllers.   

Step 1.2.  Updating.  In “updating”, we compute the prediction error and use that 

to update the “posterior mean”, our point estimate of the state of the plant.   

Step 1.2a.  Observed Residual.  When the observation yt arrives, we compute the 

observed residual as,  

 et = yt – ft.  (5.18)  
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Step 1.2b.  Posterior Mean.  With observed residual in hand, we multiply it by the 

Kalman gain and add the product to the prior mean to obtain the posterior mean per 

(5.17), as follows:   

 xt|t = tttt eKx +−1| .  (5.19)  

This completes step 1, observation, in Bayesian sequential updating as outlined in 

Figure 3.3.  Next, we permit the plant to transition in preparation for the next observation, 

per step 2.   

Step 2.  Prior for the Next Observation.  Given the posterior mean and variance 

from step 1, we can easily compute using (5.1) the prior mean and variance for the next 

observation, as follows:   

Step 2.1.  Prior Mean.   

 xt+1|t = xt|t,  (5.20)  
and  

Step 2.2.  Prior Variance.   

 tt |1+Σ  = tt|Σ  + W. (5.21)  

This completes step 2.  The resulting prior distribution at one point in time 

Np(xt+1|t, tt |1+Σ ) becomes, when t is incremented to t + 1, an input for step 1.1 as Np(xt|t–1, 

1| −ttΣ ).  In this way, observations are processed sequentially as they arrive.  If the model 

(5.1) - (5.2) is correct, then the prior Np(xt+1| t , tt |1+Σ ) summarizes all the information in Dt 

= {yt, yt–1, ..., y1, x1|0, 0|1Σ } about the state of the plant at time 1+t .   

We now apply this theory to the example shown in Figure 5.1.   
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5.2.  Example:  Drift in Metrology Sensitivity Parameters  

The theory of section 5.1 was applied to a simulated metrology problem.  The 

input data are presented in Figure 5.1.  A few of these observations and corresponding 

computations appear in Table 5.1, and the Bayesian prior means are plotted in Figure 5.2.   

Table 5.1.  Detecting and Isolating a Measurement Sensitivity Problem  
 

Table 5.1.1.  Scenario Simulated  
 

Distribution at First Use  standard precision  
 mean variance, ΣΣΣΣ1|0 deviation 1

0|1
−Σ  

 x1|0 b0,1    b1,1 b0,1    b1,1 b0,1    b1,1 
b0,1 0    0.1    0    0.316       10      0 
b1,1 1    0       0.1                0.316      0    10 

Observation error  variance  standard precision 
  2

vσ  deviation  2−
vσ  

    0.01 0.1       100 
Migration   standard  precision  
 mean variance, W  deviation  1−W  

 xt+1   b0,t+1   b1,t+1   b0,t+1    b1,t+1    b0,t+1   b1,t+1 
simulated b0,t+1   0.03   0         0       0             ∞        0 

b1,t+1 0    0         0                 0       0       ∞ 
assumed b0,t+1 0    0.001  0  0.0316   1000        0 

b1,t+1 0   0         0.001               0.0316       0  1000 
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Table 5.1.2.  Illustrative Calculations 
  Simulated  Prior from previous step 2 Intermediate computations  
  true  Observation  variance  precision precision  variance Kalman prediction 
  state yt = b0,t + mean ΣΣΣΣt|t–1 1

1|
−

−ttΣ  1
|

−
ttΣ  tt|Σ  Gain  error  

time   xt  b1,tut + vt 1| −ttx  b0,t      b1, t b0,t        b1,t b0,t      b1,t b0,t      b1,t Kt tê  
eq’n → (5.1) (5.2) (5.19) + 

(5.20)  
(5.21)  (5.14)  (5.16) (5.18) + 

(5.5)  
1 b0,t 

b1,t 
– 0.012 
   1.113 

 
 

ut =    0.863 
yt =    0.887 

0 
1 

     0.1      0 
     0         0.1 

  10.0      0 
    0       10.0 

    110.0      86.3 
      86.3      84.5  

   0.0458  – 0.0468 
– 0.0468     0.0596 

 0.542 
 0.468 

 
 

   0.024 

2 b0,t 
b1,t 

   0.018 
   1.113 

 
 

ut = – 0.631 
yt = – 0.809 

   0.013 
1.011 

   0.0468  – 0.0468 
– 0.0468     0.0606 

   93.5     72.2 
   72.2     72.2  

    193.5        9.0 
        9.0     112.1  

   0.0052  – 0.0004 
– 0.0004     0.0090 

 0.545 
– 0.607 

 
 

– 0.183 

 3 b0,t 
b1,t 

   0.048 
   1.113 

 
 

ut =    0.924 
yt =    1.119 

– 0.087 
   1.122 

   0.0062  – 0.0004 
– 0.0004     0.0099 

    162.1        6.8 
        6.8     100.7 

   262.1        99.2 
     99.2      186.0  

   0.0048  – 0.0025 
– 0.0025     0.0067 

 0.243 
 0.367 

 
 

   0.169 

  . . .    . . .     . . .  

18 b0,t 
b1,t 

0.498 
1.113 

 
 

ut = – 0.483 
yt = – 0.043 

0.381 
1.128 

   0.0043  – 0.0014 
– 0.0014     0.0050 

  256.8    71.3 
    71.3  219.5 

    356.8      23.1 
      23.1    242.7  

   0.0028  – 0.0003 
– 0.0003     0.0041 

 0.295 
– 0.227 

 
 

   0.120 

19 b0,t 
b1,t 

0.528 
1.113 

 
 

ut =    0.041 
yt =    0.686 

   0.417 
1.101 

   0.0038  – 0.0003 
– 0.0003     0.0051 

  262.7    13.7 
    13.7  195.1 

    362.7      17.8 
      17.8     195.2  

   0.0028  – 0.0003 
– 0.0003     0.0051 

 0.276 
– 0.004 

 
 

   0.224 

20 b0,t 
b1,t 

0.558 
1.113 

 
 

ut =    0.551 
yt =    1.188 

   0.478 
   1.100 

   0.0038  – 0.0003 
– 0.0003     0.0061 

  266.0    10.9 
    10.9  163.2 

   366.0        66.0 
     66.0      193.5  

   0.0028  – 0.0010 
– 0.0010     0.0055 

 0.236 
 0.204 

 
 

   0.103 

21 b0,t 
b1,t 

0.588 
1.113 

    0.503 
   1.121 

   0.0039  – 0.0010 
– 0.0010     0.0065 

  266.0    40.6 
    40.6  159.9 
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The defining parameters of the Kalman filter are given in Table 5.1.1.  The 

distribution at first use is assumed to be a bivariate normal with mean x1|0 = (0, 1)’ and 

covariance ΣΣΣΣ1|0 = 0.1 I2.  The noise and migration parameters are similarly given in Table 

5.1.1.  In many applications, these numbers are all obtainable from external sources:  For 

manufactured products, the distribution at first use can often be obtained from data 

collected at final test.  The noise variance can be obtained from a study of gage 

repeatability and reproducibility (NIST 2001).  The migration parameters can be modeled 

parsimoniously with reference to reliability data, as suggested in section 3 above.  In 

biostatistics, the “distribution at first use” of the condition of human subjects and the 

migration parameters can be estimated from previous similar clinical studies.   

The simulated true but unknown sensitivity parameters at time t = 1, 2, 3, ..., 19, 

20, and 21 were determined as described in Table 5.1.1.  A single pair of pseudo-random 

numbers following a bivariate normal with mean (0, 1)’ and variance 0.1I2 were 

generated to obtain the simulated true value at t = 1 of (–0.012, 1.113)’.  After that, the 

simulated condition of the plant was changed by an increment of (0.03, 0)’ at each point 

in time, progressing to (0.018, 1.113)’ at t = 2, to (0.048, 1.113)’ at t = 3, to ... (0.588, 

1.113)’ at t = 21.   

Simulated values for the reference samples ut were generated to follow N(0, 1) 

and appear in the third column of Table 5.1.2 along with simulated observations yt 

computed as Htxt + vt = [1, ut]xt + vt  with observation error vt ~ N(0, 0.01) as described 

in Table 5.1.1;  these pairs of values are plotted in Figure 5.1.   

Kalman filtering begins with the initial prior at time t = 1 taken from the 

distribution at first use given in Table 5.1.1.  Step 1.1a tells us to compute the forecast per 
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(5.5) as ft = 1| −tttxH  = (1, 0.863) (0, 1)’ = 0.863 for t =1.  We will not use the predictive 

standard deviation 1| −tyσ  in this discussion and so will not compute it.  In many 

applications, it is wise to evaluate the prediction error et to determine if it is plausible or 

might be an outlier;  in that case, we would use 1| −tyσ  to evaluate this.  In other 

applications, we wish to compute the log(likelihood) for comparison with other models;  

in those cases as well, we would need 1| −tyσ .   

Step 1.1b tells us to compute the posterior precision as the sum of the observed 

information from prior and observation per (5.14).  At time t = 1, the information about xt 

contained in the data is  

 ( ) [ ]863.01100
863.0
1

1
2

1 







=′ − HH vσ 








=

5.743.86
3.86100

.  

To this, we add the prior information 1
1|

−
−ttΣ  = 10 I2 to get the posterior information 1

|
−
ttΣ  

for t = 1 given in Table 5.1.2.  The inverse of this posterior information is the posterior 

covariance matrix tt|Σ  given just to the right of 1
|

−
ttΣ .   

The posterior covariance matrix is then post-multiplied by tH′  = (1, 0.863)’ and 

the observation precision 2−
vσ  = 100 to get the Kalman gain Kt = (0.542, 0.468)’ for t = 1, 

completing step 1.1c.   

With these preparations done after the previous observation but before the current 

observation arrives, we now suppose that the latest observation arrived as y1 = 0.887.  The 

forecast ft = 0.863 is subtracted per step 1.2a (5.18) to obtain the prediction error et = 

0.024.  This is then multiplied by the Kalman gain as Ktet = (0.013, 0.011)’ and added to 
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the prior mean 1| −ttx  per (5.19) to get the posterior mean xt|t = (0.013, 1.011)’ for t = 1, 

ending step 1.2b.   

Step 2.1 tells us that the prior mean for the next observation is just the posterior 

mean from the previous observation.  Thus, for t = 2, 1| −ttx  is the vector just computed 

(0.013, 1.011)’.  Similarly, per (5.21) step 2.2, the prior covariance matrix 1| −ttΣ  is 

0.001I2 plus the posterior covariance matrix from the previous observation.   

After repeating this iteration for all 20 observations, we got the rest of the 

numbers appearing in Table 5.1.2, plus others not shown there.  The prior means are 

plotted in Figure 5.2.   

 

5.3.  Literature Review  

Kalman (1960) developed the basic mathematics discussed herein to solve 

problems of smoothing and forecasting.  He derived the minimum mean square error 

linear predictor, not the Bayesian posterior.  When all distributions are normal, these two 

approaches are equivalent.  In certain cases with, for example, non-normal observations, 

Bayesian sequential updating as discussed here can produce nonlinear estimators that 

outperform Kalman’s minimum mean square error linear predictor, at least for some 

purposes.   

For a more recent presentation of Kalman filtering, see, e.g., Gelb (1990).  For 

enhancements, see, e.g., Siouris (1996), Mosca (1995), and Brown and Hwang (1997).  

For a discussion with a more statistical flavor, more consistent with our “Bayesian 

sequential updating” approach, see, e.g., Harvey (1989), Pole, West and Harrison (1994), 
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or West and Harrison (1999).  These latter two references also include simultaneous 

estimation of a relative precision parameter, related to the “EWMA for variance”, 

discussed in section 4 above.   

Fault detection and isolation is an important topic in the advanced control theory 

literature.  For recent contributions in that area, see, e.g., Chen and Patton (1999), Gertler 

(1998), and Natke and Cempel (1997).   

The use of Bayesian sequential methods for “model monitoring” and for detecting 

“discontinuous changes in time series” is discussed by Gordon and Smith (1988), West 

(1986), Pole, West and Harrison (1994) and West and Harrison (1999).  Gordon and 

Smith (1988) recommend “model selection” based on the posterior probability of a 

particular model operating.  West (1986), Pole, West and Harrison (1994), Harrison and 

Lai (1999) and West and Harrison (1999) recommend the use of “cumulative Bayes’ 

factors” to determine if an alternative model better describes the data;  the logarithm of 

“cumulative Bayes’ factors” is, in essence, a one-sided Cusum of log(likelihood ratio).  

As discussed in section 2 above, this is virtually equivalent to the increase in the posterior 

log odds of an abrupt jump to the alternative model, relative to the log hazard odds.   

 

5.4.  Discussion  

A Kalman filter monitor similar to that discussed here will generally be fairly 

responsive to a real malfunction, especially if the failure process is gradual, roughly 

consistent with the assumed migration rate.  In that case, the posterior tt|x  and the 

subsequent prior tt |1+x  will tend to track the true but unknown xt fairly closely.  An abrupt 
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failure will still be identified by this monitor, though perhaps not quite as quickly as by a 

monitor designed specifically to detect abrupt jumps.  Such applications could be tracked 

with a Cusum (e.g., Bayes-adjusted as discussed in section 2 above) of log(likelihood 

ratio) of the predictive distribution assuming non-zero migration variance W in (5.1) 

compared to one that assumes W = 0.  As for other Cusums, detection thresholds can be 

selected using Monte Carlo simulation to estimate and balance selected characteristics of 

the run length distributions for good and bad systems.   
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6.  FAULT ISOLATION USING ANALYTICAL REDUNDANCY  

Fault detection and isolation has traditionally been accomplished by adding a 

separate sensor with companion hardware and software for each failure mode of interest.  

This increases the both the per unit cost and the physical mass of the product.  The cost 

per unit is always a concern;  in some applications (e.g., aviation), the increased weight 

can also be an issue.  An alternative that is sometimes available is to use analytical 

redundancy, identifying and isolating faults from inconsistencies between readings from 

multiple sensors.  To fix ideas, consider the air intake system of an automobile engine 

portrayed in Figure 6.1.  In this case, for example, equations of fluid flow assert that a 

certain relationship should hold between the readings for mass air flow (MAF), the 

manifold absolute pressure (MAP), and the throttle position sensor (TPS), apart from 

model inadequacies and measurement noise whose magnitudes can be estimated.  In this 

section, we discuss the use of Kalman filtering to continually reestimate sensitivity 

parameters, assuming they may drift as discussed in the previous section.  In this way, we 

hope to identify and isolate faults with any of these primary sensors.  We illustrate the 

method in this section and discuss an extension in the next section.   
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Figure 6.1.  Estimating Sensitivity Parameters in a Measurement Process  
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In particular, section 6.1 considers a simplified version of this problem, 

attempting to diagnose sensitivity faults with the mass air flow (MAF) sensor and the 

throttle position sensor (TPS), considering MAF as both a univariate output and as a 

component of the state vector.  To avoid confusion, we will attempt to carefully 

distinguish at each point in this discussion whether we are referring to the true but 

unknown value of MAF, a model prediction, or a noisy measurement.  The consequences 

of misspecifying noise and migration variance parameters is discussed in section 6.2 with 

further general discussion provided in section 6.3.  Mathematical details are described in 

appendix section 6.4.  The example of section 6.1 is extended in section 7 to use bivariate 

outputs, MAF and manifold absolute pressure (MAP), to isolate problems that might arise 

with either MAF, MAP or TPS sensors.  This theory isolated faults for us with one or two 

sensors but failed when considering potential problems with three sensors.  Possible 
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reasons for this are discussed in section 6.4.  In many applications, these problems can be 

overcome using multiple model adaptive estimation (MMAE), discussed in section 7.   

 

6.1.  Bayesian Updating for Fault Isolation  

We consider a possibly nonlinear, dynamic plant described as follows:   

 xt+1 = ft + wt, where ft = ft(xt , ut), wt ~ Np(0, Wt), (6.1) 

xt = state vector, and ut = vector of controls and other inputs;  we assume that ft(xt , ut) is 

continuously differentiable with respect to xt throughout the operating region.  In this 

section, we focus on a special case with  

 xt = 
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where  

Gt = true but unknown MAF at time t (see Figure 6.1),  

( )ttG ux ,~  = predicted MAF at time (t + 1) given state and inputs (xt , ut),  

a0,t and a1,t are the true but unknown MAF sensitivity parameters,  

b0,t and b1,t are the true but unknown TPS sensitivity parameters, and  

ut = a vector of inputs including measured TPSt , which is related to the true but 

unknown throttle position at time t, Ct , as TPSt = c0,t + ttCc ,1 . 

In section 7, expression (6.2) will be generalized to include in the state vector xt the 

manifold absolute pressure, MAP, Pt , and different combinations of sensitivity 
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parameters for these and other sensors.  In the present discussion, we shall assume that 

the functions ( )ttG ux ,~  and ft(xt , ut) are known.   

The first of the six lines in Figure 6.2 presents 2,000 observations at 100 

millisecond intervals on MAF through the air intake system of a 1998 production vehicle 

with a 4.6 liter dual overhead cam (DOHC) V-8 engine modified for test purposes;  thus, 

this image spans 200 seconds.  The second line presents the TPS reading for the same 

period.  This figure matches our intuition that the air flow tends to be high when the 

throttle is open, and conversely the air flow is low when the throttle is closed.  Figure 6.3 

presents a simulation of a dual fault, where the minimum mass air flow is 20, even when 

the throttle is closed, and where the TPS readings are 40 percent larger than they should 

be.  The bottom four lines in Figures 6.2 and 6.3 show the estimated trajectories of 

sensitivity parameters for MAF and TPS for the corresponding MAF and TPS readings.   

With the good plant in Figure 6.2, we see that the estimated (a0,t , a1,t , b0,t , b1,t) 

stay relatively close to (0, 1, 0, 1), as they should.  However, when the simulated fault 

appears in the middle of Figure 6.3, the estimated values for (a0,t , a1,t , b0,t , b1,t) move 

fairly quickly towards the simulated values of (20, 1, 0, 1.4).  Roughly 30 seconds (300 

observations) after the onset of the simulated fault, the estimated sensitivities have largely 

adjusted to the change, with a0,t and b0,t , close to the simulated values of 20 and 0, 

respectively, while the slope b1,t  increased to 1.3, stopping short of the simulated 1.4 and 

the slope a1,t  drifted away from the simulated 1 to around 0.8.   
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Figure 6.2.  Mass Air Flow Measured, Throttle Position, and Filtered Sensitivities  
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Figure 6.3.  Filtered Sensitivities with Simulated Faults  

MAF Offset;  TPS Hyper
PR

TF
LO

W

2000 2500 3000 3500 4000

0

10

20

30

40

50

60

Simulated problem:  b0 = 20; b1 = 1

sim.out43

TA

2000 2500 3000 3500 4000

0

10

20

30

Simulated problem:  b0 = 0; b1 = 1.4

b.
M

AF
0

2000 2500 3000 3500 4000

-20

-10

0

10

20

b.
M

AF
1

2000 2500 3000 3500 4000

0.0

0.5

1.0

1.5

2.0

b.
TP

S0

2000 2500 3000 3500 4000

-20

-10

0

10

20

b.
TP

S1

2000 2500 3000 3500 4000

0.0

0.5

1.0

1.5

2.0

Fri Apr 14 07:40:58 2000

MAF

TPS

a0
a1

b1

b0

 



Foundations of Monitoring  

© 2001 Graves and Bisgaard  6-7 Foundations6-Kalman3.doc:  11/26/01 

The difference between (a1,t , b1,t) ≈ (0.8, 1.3) and the simulated (1, 1.4) push us to 

ask “Why?”  Unfortunately, since this is a nonlinear plant, it is difficult to evaluate the 

exact source of this bias.  However, we believe it is related either to the nonlinear nature 

of ( )ttG ux ,~  or to controls that place a premium on vehicle performance in ways that 

provide poor leverage for estimating sensitivity parameters;  this issue is considered 

further in the discussion section 6.3 below.   

Filtered estimates in situations such as this are obtained from noisy measurements 

as follows:   

 yt = ht + vt, where ht = ht(xt , ut), vt ~ Nk(0, Vt), (6.3) 

and xt and ut are vectors of state and inputs, as with (6.1).  In the example of this section, 

p = 1, and ht(xt , ut), = a0,t + a1,tGt , where Gt = the true but unknown MAF at time t.  In 

the examples of section 7, p = 2, so ht is multivariate in addition to being a nonlinear 

function of xt .   

To complete the specification of this portion of the model per (6.1) and (6.3), we 

need values for the transition and observation covariance matrices, Wt and Vt .  For 

Figures 6.2 and 6.3, we took Vt = 0.2 and Wt = a diagonal matrix with elements Wt(Gt) = 

1, Wt(a0,t) = Wt(b0,t) = 0.1, and Wt(a1,t) = Wt(b1,t) = 510− .   

As in sections 3-5, we initiate Bayesian sequential updating by assuming that x1 ~ 

Np(x1|0 , ΣΣΣΣ1|0), with x1|0 = (20, 0, 1, 0, 1)’ and ΣΣΣΣ1|0 = diag(100, 4, 0.1, 4, 0.1).  As discussed 

in section 6.4, these assumptions with (6.1) and (6.3) drive the Kalman iteration outlined 

in Figure 3.3 above to produce the images in Figures 6.2 and 6.3.   
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These values for Vt , Wt , x1|0 , and ΣΣΣΣ1|0  were chosen after conducting several 

designed experiments varying appropriate combinations of elements systematically and 

selecting combinations that seemed to provide the greatest discrimination between good 

and bad.  Brown and Hwang (1997, sec. 9.3) and West and Harrison (1999, sec. 12.2) 

suggest running multiple Kalman filters in parallel and recursively computing posterior 

probabilities of the different combinations of parameters.  This should eventually settle 

on the best combination of parameter values.  While this would ultimately be a wise thing 

to do, it should be done in conjunction with simulating a suite of faults on a variety of 

different vehicles.  Otherwise, we might select a model and parameters that predict better 

the behavior of a particular good plant but is unable to detect faults or perform well under 

untested operating conditions or with a different copy of ostensibly the same plant.  

Moreover, we want a monitor that performs well even with modest misspecification of 

model parameters.  If it requires too much tuning to make it work, it may not perform 

properly with the inevitable variability between ostensibly equivalent applications, e.g., 

different copies of the same design vehicle or different patients in the same clinical trial 

or different production lines for similar products.  Also, before we expend the resources 

to tune a monitor, we want to have some confidence that our monitor is probably 

otherwise close to being acceptable.  In this case, we concluded that to diagnose faults of 

interest with the air intake system of Figure 6.1, we needed multiple model adaptive 

estimation, discussed in section 7.   
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6.2.  Consequences of Misspecifying Noise and Migration Variances  

To evaluate the consequences of misspecifying Wt and Vt , we first note that a 

single common “relative precision” parameter can be factored out of both Wt and Vt 

without affecting the estimated state of the plant.  This can be seen in the Kalman Gain 

computations described below.  In the special case where observation yt  and state xt  are 

both univariate and where ft(xt , ut) = ht(xt , ut) = xt , this has already been discussed the 

previous section on a “Bayesian EWMA for mean and variance”.  There, we learned that 

the relative precision affects the width of confidence intervals but not the prior and 

posterior means for xt .  This principle applies also to the present development:  If Wt and 

Vt are both multiplied by a factor of 100, the width of confidence intervals is multiplied 

by a factor of 10 = 100 .   

This common factor in Wt and Vt can be estimated sequentially by replacing Wt 

and Vt with (Wt /φ t) and (Vt /φ t), respectively, and developing the theory following the 

steps described with the previous section on a “Bayesian EWMA for mean and variance”;  

for linear Kalman theory, this has already been discussed by West and Harrison (1999) 

and Pole, West and Harrison (1994).  If we do this and then multiply Wt  and Vt  by 100, 

we will find that φ t  would be replaced by 100φ t , the EWMA for variance would be 

divided by 100, and the resulting confidence intervals for prior and posterior state and 

prediction intervals for future observations would be unaffected.  We shall not pursue this 

generalization here.   

While the overall level of Wt and Vt directly affect the width of confidence 

intervals, the relative magnitudes of different elements of Wt and Vt affect the filtered 

estimates in more subtle ways.   
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In general, we favor setting Vt via studies of gage repeatability and reproducibility 

and Wt considering reliability data, as discussed in the previous section on “designing 

Bayesian EWMA monitors using gage R & R and reliability data”.  Failing that (or in 

addition), we prefer to estimate an EWMA for variance in conjunction with the means 

and conditional variance parameters of prior and posterior distributions for the state 

vector and for the predictive distributions, generalizing the present section and the 

previous section on a “Bayesian EWMA for mean and variance”.   

While developing prototype monitors using the theory described herein, we 

conducted several designed experiments, varying different elements of Wt and Vt 

systematically to evaluate their impact on monitor performance.  In a typical experiment, 

the migration parameters for intercept and slope were varied by factors of 10 and 100 in a 

( )pointcenter 22 +×  design, outlined in 5 of the 13 rows of Table 7.1 in the next section.  

Clearly, the effectiveness of an otherwise acceptable monitor could be destroyed by 

sufficiently bad choices for Wt and Vt .  However, in our limited experiments of this 

nature, we saw no cases where an acceptable monitor ceased to function properly, nor 

where an unacceptable monitor could be made to function dramatically better.  Our 

conclusion from this and other efforts is that the primary point of leverage in monitoring 

is in better models, improving ft(xt , ut) and ht(xt , ut), and thereby also reducing the 

magnitude of Wt and Vt ;  better choices for Wt and Vt can improve monitor performance, 

but monitor performance seemed reasonably robust over a fairly wide range of plausible 

values for Wt and Vt .   
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6.3.  Discussion  

With simulations such as those summarized in Figures 6.2 and 6.3, we have 

demonstrated a potential for fault isolation using Kalman filters that include ongoing 

reestimation of potentially drifting sensitivity parameters for various sensors.  However, 

when we generalized the model of (6.2) to include three pairs of sensitivity parameters, 

for MAF, MAP and TPS (as described in Figure 6.1), the Kalman filter just got lost:  In 

our simulations, random variability in the observations translated into excessive 

movement in the 6 sensitivity parameters that made it extremely difficult to diagnose a 

fault from the estimated sensitivity parameters and in some cases even hampered the 

ability of the filter to predict future observations.  We were able to reduce the severity of 

some of the instabilities we encountered by careful choice of noise and migration 

variances.  In addition, some improvements could doubtless be obtained by first 

transforming all variables so they are approximately centered at 0 with typical variation 

(e.g., standard deviation) of 1;  this will improve the numerical stability of the algorithm. 

However, even if rescaling produced acceptable fault isolation with this 8-dimensional 

Kalman filter, we would likely still encounter the problem if we wanted also to isolate 

faults with the exhaust gas recirculation valve or the idle air control or something else.  

Moreover, a Kalman filter that will work fine with the double precision (64-bit) 

arithmetic now standard with modern computers may fail miserable with the 8- or 16-bit 

microprocessors used for control and fault detection plus isolation in many products sold 

in the thousands and millions of units.  An algorithm that requires 64- or 128-bit 

arithmetic will not likely become a production standard in this environment.   
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Part of this problem is related to the concept of leverage in regression (Belsley, 

Kuh, and Welsch 1980):  Every student of algebra learns that two points determine 

straight line, with some restrictions.  Given 100 observations on y with x = 2 in all 100 

observations, we cannot estimate both b0 and b1 in y = b0 + b1x.  Similarly, given 100 

observations on y with x1 = x2 in all 100 observations, we cannot estimate both b1 and b2 

in y = b0 + b1x1 + b2x2.  By extension, it is easy to imagine a situation where the laws of 

physics combined with automatic controls might constrain MAF, MAP and TPS to move 

together in ways that would not support simultaneous estimation of sensitivity parameters 

for three different sensors.  In some cases, the leverage required for estimation might be 

obtained by dithering the automatic controls.  However, this might have an emissions 

impact and might therefore displease governmental regulators and others concerned about 

air quality, even if it were only invoked by an automotive technician for off-line fault 

isolation.  It might also cause the vehicle to cough and shudder;  few auto makers would 

want to tell to a customer, “That’s a feature:  We designed the car to do that!”   

Fortunately, Menke and Maybeck (1995) and Eide and Maybeck (1996) have 

provided a vision of a principle for fault detection and isolation that will not require such 

extreme measures in many cases:  They suggest multiple model adaptive estimation 

(MMAE), which involves simultaneously running multiple Kalman filters, each designed 

to detect a different fault or combination of faults.  They were concerned with 

determining when to eject a pilot from a high performance fighter aircraft, where a delay 

of more than half a second from fault onset may make it impossible to eject the pilot 

safely, thereby sacrificing the pilot as well as the aircraft.  In section 7, we discuss 

MMAE.   
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6.4.  Appendix:  Extended Kalman Filtering  

In this section, we derive “extended Kalman filtering” from Bayesian sequential 

updating, as outlined in Figure 3.3.  West and Harrison (1999, p. 496) cite earlier 

literature that derive this from the principle of minimum mean squared error prediction.  

In the process, we also derive this for non-normal observations assuming approximate 

normality of the state vectors.  West and Harrison (1999) discuss a variety of approaches 

to nonlinear and non-normal dynamic modeling including the following:   

• Linearization (sec. 13.2)  

• Various techniques for numerical integration including Gaussian 

quadrature and a variety of Monte Carlo techniques (sec. 13.4 - 13.6 

and ch. 15),  

• Multi-process models that may switch between alternative dynamic 

linear models at each observation (ch. 12), and 

• Exponential family dynamic models (ch. 14).   

In this section, we derive Bayesian sequential updating with nonlinear transitions and 

possibly non-normal observations, assuming the distribution of the state is always 

adequately approximated by normal distributions.  Our approach is to linearize the 

log(probability density).  Compared to West and Harrison’s (1999, ch. 14) exponential 

family dynamic models, our approach does not require observations following an 

exponential family and is furthermore, we believe, simpler when the approximations 

involved are adequate.   
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Following West and Harrison (1999, p. 495), we are more concerned with forecast 

accuracy than with how well expression (6.1) actually models the transition process.  First 

order Taylor approximations do not have to be highly accurate for this system to work 

well.  We need only that (a) with moderately high probability, the error is moderate 

relative to the stochastic component, and (b) when the error in the linear approximation is 

substantial, the plant and model are still sufficiently stable that these deficiencies will be 

corrected with subsequent observations.   

The utility of the normal distribution as an approximation to the distribution of the 

state vector is supported by the central limit theorem:  Under suitable conditions, the 

distribution of a weighted sum of random variables is generally more nearly normal than 

the distributions of the component random variables.  The “suitable conditions” may not 

be satisfied if the transition or observation functions, ft(xt , ut) and ht(xt , ut) in (6.1) and 

(6.3), are highly nonlinear and violently discontinuous in regions occupied with 

moderately high probability.  However, the applications of interest here will generally be 

sufficiently well behaved that any non-normalities introduced by nonlinearities in ft(xt , 

ut) and ht(xt , ut) can be ignored.  For further discussion of these issues, see, e.g., 

Gnedenko and Kolmogorov (1968), Rao (1973), or Skovgaard (1986).   

As in previous sections, we organize this development around the two steps of 

Bayesian sequential updating: 1.  Observation, and 2. Transition.  We begin with some 

implications of Bayes’ theorem, which seem to us to be new and which provide a more 

direct path to the required computations than the less general approach discussed in 

previous sections.   
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Step 1.  Observation Using Bayes’ Theorem.  We begin with the following 

relationship based on the definition of conditional probabilities:   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )priornobservatioposteriorpredictivejoint
||,|||, 1111

×=×=
== −−−− tttttttttttt DppDpDpDp xxyyxyxy

,  

where p( . | . ) = probability density.  But Dt = {yt, Dt–1}, so ( )1,| −ttt Dp yx  = ( )tt Dp |x .  

Now taking logarithms, letting ( ).|.l  = ( )[ ].|.ln p , we get the following:   
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We will use first and second derivatives of this expression relative to xt :   
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Now recall that the observed information is defined as the negative of the second 

derivative of the log(likelihood), and the Fisher information is the expected value of the 

observed information.  Let J( . | . ) denote the observed information matrices = the 

negative of the matrices of second partials in (6.5).  Then (6.5) becomes  

 
( ) ( ) ( )
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=






+= −

ninformatio
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||| 1tttttt DD xJxyJxJ
. (6.6) 

We find this result quite useful if only to help us remember and understand 

Kalman filtering / Bayesian sequential updating.  In the normal case, this information is 

also the precision parameter(s), being the inverse of the variance (or covariance matrix).  

More generally, with non-normal observations, the information from observations could 
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fail to be nonnegative (or nonnegative definite).  For example, consider the simple 

mixture of two normals, yt ~ 0.5 ( )1,2+µN  + 0.5 ( )1,2−µN .  The likelihood is less for µ 

= yt than for µ = yt + 2.  By this fact and by the symmetry of this case, the second 

derivative of the log(likelihood) must be positive at µ = yt , which makes the observed 

information negative there.  West and Harrison (1999, ch. 12) deal with this by running a 

mixture of dynamic models.  For the present, we will assume that the information from 

observations is always nonnegative (or nonnegative definite).   

As mentioned above, we assume that the prior and posterior are both adequately 

approximated by normal distributions, ( )1|1| , −− ttttpN Σx  and ( )ttttpN || ,Σx , so  

 ( ) ( ) ( )1|
1

1|1|11 2
1| −

−
−−− −′−−= tttttttttt cDl xxΣxxx ,   

and  

 ( ) ( ) ( )tttttttttt cDl |
1
||2

1| xxΣxxx −′−−= − ,   

where c and 1c  are appropriate constants (relative to xt).  From this, we get the following:   
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Substituting (6.8) into (6.6), we get  

 ( ) 1
1|

1
| | −

−
− += tttttt ΣxyJΣ . (6.9) 
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Note, however, that this immediately exposes a problem:  We assume that the 

prior is normal, which means that 1
1|

−
−ttΣ  is assumed to be constant.  However, unless the 

observation yt is a linear function of the state xt plus normal noise, the information 

( )tt xyJ |  might not be a constant.  Therefore, if (6.9) is a strict equality, the posterior 

information 1
|

−
ttΣ  might not be constant.  Fortunately, ( )tt xyJ |  tends not to vary much 

over the range of plausible values for xt .  If ( )tt xyJ |  is sufficiently well behaved, we 

approximately the log(posterior density) by a parabola, replacing ( )tt xyJ |  by a constant.  

In these cases, the posterior mode occurs at xt|t .  This suggests that we replace ( )tt xyJ |  

in (6.9) by ( )ttt || xyJ .  In many applications, the difference between ( )1|| −ttt xyJ  and 

( )ttt || xyJ  will be small, and we will often use ( )1|| −ttt xyJ  in place of ( )tt xyJ |  in (6.9).   

Expression (6.9) relates to a more general result, namely that the sampling 

distribution of maximum likelihood estimators is, under very general regularity 

conditions, approximately normal with covariance matrix being the inverse of the 

information (e.g., Rao 1973, or Skovgaard 1981).  Thus, even with non-normal 

observations, J(yt | xt) generally acts like precision parameter(s), being the inverse of 

variance / covariance matrices.  When the dimensionality of the state xt exceeds that of 

the observations yt , the information J(yt | xt) will generally be singular but still 

nonnegative definite.  With certain non-normal cases, the information may be negative for 

certain outcomes yt .  However, these are generally rare, and when several observations 

are combined, this condition almost never persists.  For the present discussion, we will 

ignore such cases.   
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Before proceeding, note that (6.6) and (6.9) expose a duality between Bayes’ 

theorem and the addition / convolution of independent random variables:  Recall that the 

variance of a sum of independent random variables is the sum of the variances.  By 

contrast, when combining observations with prior information, the information matrices, 

not the variances, add.  This is analogous to how resistances combine in series and 

parallel circuits in electronics:  In series, the resistances add;  in parallel, the 

conductances (being the reciprocal resistances) add.   

To obtain the posterior mode, we let xt  = xt|t in (6.7) and substitute the result into 

(6.4) as follows:   
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To solve this for xt|t , we expand ( ) tttl xxy ∂∂ ,  about a point ξξξξ using Taylor’s theorem, as 

follows:   
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We substitute this into (6.10) to get the following:   
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The coefficient of xt|t in this expression can be written using (6.9) as follows:   

 ( ) 1
1|

1
,| | −

−
− +== tttttt ΣξxyJΣ ξ . (6.11)  

We use this to rearrange the previous expression as follows:   
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We now rewrite (6.11) as ( )ξxyJΣΣ ξ =−= −−
− tttttt |1

,|
1

1|  and substitute into (6.12) to get  

 ( ) ( ) ( )( )1|1||
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Next, we solve this for xt|t to obtain the following:   
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This expression can now be used to define an iteration.  For the first cycle, we let 

ξξξξ = 1| −ttx ;  with this choice for ξξξξ, (6.13) simplifies to the following:   
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For most applications, we will stop after one iteration, relying on future observations to 

correct any suboptimality created by stopping too early.   

We now specialize this to the particular observation process invoked in (6.3), for 

which  

 ( ) ( ) ( )tttttytt cl hyVhyxy −′−−= −1

2
1| ,   

where ht = ht(xt , ut).  Then  

 ( ) ( )tttt
t

ttl hyVh
x

xy −′=
∂

∂ −1
1,

| ,   

where   (6.15) 

 
( )

t

ttt
t x

uxhh
′∂

∂
=

,
1,    

is the indicated pk ×  matrix of partial derivatives;  unless otherwise specified, ht,1 will 

be evaluated at xt = 1| −ttx .  Taking second derivatives while assuming that the curvature of 

ht,1 is negligible gives us  
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 ( ) 1,
1

1,| ttttt hVhxyJ −′= .  (6.16) 

In the work reported in this section, ht,1 and ( )tt xyJ |  were always evaluated at xt = 

1| −ttx .  

This completes all the pieces required for “step 1.  Observation” in Bayesian 

sequential updating.  Organizing this material into substeps as outlined in Figure 3.3 

above will be left as an exercise for the reader.   

Step 2.  Transition.  Given the posterior (xt | Dt) ~ Np(xt|t, ΣΣΣΣt|t), after the transition 

(6.1), the prior at time (t + 1) is given by ( ) ~|1 tt D+x ( )ttttpN |1|1 , ++ Σx , where using 

Taylor’s theorem we get the following:   

 ( )tttttt uxfx ,||1 =+    
and  
 ttttttt WfΣfΣ +′= ++ 1,|11,|1   
where  

 ft,1 = 
( )

t

ttttt

x
uxxf

∂
=∂ ,| .  

We now have all the pieces required for Bayesian sequential updating, as outlined 

in Figure 3.3 above.  We note also that this work can be further generalized to estimate an 

EWMA for variance, analogous to section 4 above, through the introduction of a scalar 

relative precision parameter in the obvious places.   
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7.  MULTIPLE MODEL ADAPTIVE ESTIMATION (MMAE)  

In this section, we discuss the use of multiple Kalman filters, each designed to 

detect a different set of failure modes in a common plant.  We consider in particular the 

air intake system sketched in Figure 6.1.  In that particular application, we found that 

Kalman filters designed to estimate sensitivity parameters for one or two sensors could 

adapt appropriately and could therefore detect and isolate certain simulated faults.   

However, a Kalman filter designed to estimate sensitivity parameters for three 

sensors simultaneously just got lost.  Two possible sources for this problem were 

identified.  First, Kalman filtering is in essence a least-squares regression, performed one 

observation at a time, gracefully discounting older data that is less relevant because the 

regression parameters (state of the plant) have presumably migrated over time.  In this 

context, the concept of leverage in regression is important:  Physical laws of fluid flow 

combined with automatic controls might make it practically impossible to estimate this 

many parameters.  Some of this lack of leverage for regression might be overcome by 

dithering the controls.  However, this might make the vehicle cough and shudder.  This 

would clearly be unacceptable in routine use.  It might be allowable in a special 

diagnostic mode induced by an automotive repair technician.  However, since that might 

have an emissions impact, governmental regulators and others concerned with air quality 

might object.   

A second possible source of computational difficulties might be numerical 

precision:  The components of the Kalman state vector were not rescaled to roughly mean 

zero and standard deviation of 1 under routine operations, nor did we necessarily take 

great care to ensure that all computations used numerically stable techniques such as 
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Cholesky decompositions.  If we had done so, we doubtless would have gotten better 

monitors for the air intake system of Figure 6.1, although we do not know if the filter 

estimating three pairs of sensitivity parameters would have performed adequately even 

then.  Moreover, the difficulties we encountered might still be a problem with in other, 

more subtle applications or when trying to implement the solutions found there on 8- or 

16-bit microprocessors used for control and on-board diagnostics on modern vehicles.  A 

more robust methodology is needed.   

Fortunately, a more robust methodology is available in the form of multiple model 

adaptive estimation (MMAE);  see, e.g., Menke and Maybeck (1995) or Eide and 

Maybeck (1996).  This in essence consists of running multiple Kalman filters in parallel, 

each designed to model a particular fault, and using Bayes’ theorem to select the most 

likely failure mode.  In applications where some time may be permitted to pass between 

fault detection and isolation, we recommend separating detection from isolation.  Under 

normal operations, a Kalman filter of a good plant only, with no components in the state 

vector for sensitivity parameters, will predict the observations with a certain amount of 

error.  At the onset of a fault, the prediction error will increase.  (If a fault does not 

increase prediction error, it should exhibit some other symptom detectable by an 

appropriate monitor.)  With evidence of an increase in prediction error, the on-board 

diagnostics then start running a bank of monitors simultaneously, each one designed to 

detect a different fault or combination of faults.  In section 7.1, we discuss fault detection 

on the basis of an increase in prediction error.  In section 7.2, we discuss fault isolation 

using multiple Kalman filters.  Section 7.3 further considers issues of designing either 

computer or physical experiments to tune parameters of the Kalman filter and residual 
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Cusum monitors.  Section 7.4 briefly reviews questions related to the numerical stability 

of algorithms.  Concluding remarks appear in section 7.5.   

 

7.1.  Fault Detection  

Suppose now we have a model that predicts observations as  

 (yt | Dt–1) ~ Nk( ht,0, 1| −tyΣ ), (7.1) 

where predictions are obtained some way, e.g., by a Kalman filter as discussed in (5.4) 

above or the generalization in the appendix to section 6.  Suppose further that when the 

plant malfunctions, the observation errors increase, e.g., as  

 (yt | Dt–1) ~ Nk( ht,0, 1| −tyΣρ ), (7.2) 

where ρ is a variance inflation factor indicating a loss of prediction ability.  We can 

monitor for an increase in ρ in two ways:  One is to via an EWMA for a univariate 

variance factor as described in section 4 above;  the theory of section 4 can be combined 

naturally with the theory of sections 5 and 6 to produce Kalman filters that are 

accompanied by a simultaneous EWMA for variance, as discussed by West and Harrison 

(1999) and Pole, West and Harrison (1994).  Another is via a Cusum of log(likelihood 

ratio) for an increase in ρ from 1 per (7.1) to something larger in (7.2), or to from a worst 

acceptable 0ρ  > 1 to a best unacceptable 1ρ  > 0ρ .  This Cusum could be a Bayes-

adjusted Cusum, as described in section 2 above.  In that case, it could potentially 

incorporate reliability information, as discussed there, modeling the increased failure rate 

anticipated from older plants.  With good data on an increasing hazard rate, that 

information could be used to improve reliability and availability at lower total cost, as 
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suggested by the discussion in section 2 above.  Automobile manufacturers may be 

reluctant to use reliability information in this way to avoid charges of manipulating on-

board diagnostics to increase sales of replacement parts, unless its use were encouraged  

by regulators.   

Whether using an EWMA for variance or a Cusum of log(likelihood ratio), we 

would need to estimate ρ in (7.2) for both worst acceptable and best unacceptable plants.  

For this purpose, we use the maximum likelihood estimate for ρ, which can be derived as 

follows.  The probability density corresponding to (7.2) is  

 ( )
( )

( ) ( ) ( )
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so the log(likelihood) is  
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With N observations, we get  

( ) ( ) ( ) ( ){ }∑∑
=

−
−

−

=
− −′−+−=

N

t
tttytt

N

t
tt kNcDl

1
0,

1
1|0,

1

1
1 ln

2
1| hyΣhyy ρρ ,  

with c = ( ) ( ){ }1|ln2ln5.0 −+− tyk Σπ .  By differentiating this with respect to 1−ρ  and 

setting the result to 0, we find that this likelihood is maximized over ρ at  

 ( ) ( )∑
=

−
− −′−=

N

t
tttyttkN 1

0,
1

1|0,
1ˆ hyΣhyρ .  (7.5) 

This relative variance parameter ρ̂  was estimated for 13 different Kalman filters 

for the air intake system of Figure 6.1 under 9 different good and malfunctioning 

scenarios.  The 13 different filters are described in Table 7.1, and the 9 scenarios are 
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outlined in Table 7.2. The relative variances ρ̂  for these 13 × 9 filter and scenario 

combinations are presented in Table 7.3.  In this table, we see that ρ̂  performed largely 

as expected except for the six 8-d full adaptive filters:  If the filter was able to adapt to the 

particular simulated fault, it did so, and ρ̂  was relatively small.  Otherwise, it was larger.   

 

Table 7.1.  Thirteen Alternative Kalman Filter Models for the Air Intake System  

 
 

Code  

Dimen-
sion of 
State  

 
 

Components of  

Adaptive 
Migration 
Variances  

 Vector  State Vector  intercept  slope  
Good 2 (MAF, MAP) NA NA  

4-d MAF 4 (MAF, MAP) + (intercept, slope) for MAF  0.001 10–7 
4-d MAP 4 (MAF, MAP) + (intercept, slope) for MAP 0.001 10–7 
4-d TPS 4 (MAF, MAP) + (intercept, slope) for TPS 0.001 10–7 

6-d w/o MAF 6 (MAF, MAP) + (intercept, slope) for MAP, TPS 0.001 10–7 
6-d w/o MAP 6 (MAF, MAP) + (intercept, slope) for MAF, TPS 0.001 10–7 
6-d w/0 TPS 6 (MAF, MAP) + (intercept, slope) for MAF, MAP 0.001 10–7 

8-d 00 8 (MAF, MAP) + (intercept, slope) for MAF,  5×10–6 10–8 
8-d 01 8 MAP, TPS  5×10–6 10–6 
8-d 10 8 “  5×10–4 10–8 
8-d 11 8 “  5×10–4 10–6 
8-d cp 8 “  5×10–5 10–7 
8-d 0b 8 “  5×10–6 10–5 
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Table 7.2.  Faulty Plants Simulated  

Table 7.2.1.  Four Problems to Simulate:  Best Unacceptable Levels(+)   
  Intercept  Slope 

 1.  Constant Plausible  ~ mean(*) 0 
 2.  Dull 0 0.6 
 3.  Hyper 0 1.4 
 4.  Offset  20 1 

(+) Worst Acceptable was selected as half of the difference 
from the nominal as the best unacceptable, i.e., 10 for 
the intercept and 0.8 and 1.2 for the slope.   

(*) The intercepts for constant plausible and offset were 
roughly equal to the mean of the observations, rounded 
off grossly;  for some sensors, the intercept was not the 
same for “constant plausible” and “offset”.   

 
Table 7.2.2.  Eight Scenarios Simulated  

 000 = no fault  
 100 = MAF constant 
 400 = MAF offset 
 020 = 0.6(MAP) dull  
 030 = 1.4(MAP) hyper  
 003 = 1.4(TPS) hyper  
 402 = (MAF offset) + 0.8(TPS) dull  
 341 = 1.4(MAF) hyper + (MAP offset) + (TPS constant) 

Codes = XYZ for (MAF, MAP, TPS)  
      where X, Y, or Z = 0 for good or 1-4 for one of the faults listed in  Table 7.2.1 
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Table 7.3.  Estimated Relative Variance(+) ρ̂  

 
Kalman 

Good  MAF 
constant(*) 

MAF 
offset 

MAP 
dull  

MAP 
hyper  

TPS 
hyper  

dual 
fault  

triple 
fault  

Filter (000) (100) (400) (020) (030) (003) (402) (341) 
2-d Good 2.06 30.69 87.20 37.23 47.01 18.57 138.65 138.72 
4-d MAF 1.74 2.14? 1.61 36.84 42.57 11.40 9.38 75.67 
4-d MAP 1.42 27.05 81.03 1.10 2.05 7.12 125.72 84.11 
4-d TPS 0.71 18.28 47.78 17.78 16.86 0.66 47.45 3.81 

6-d w/o MAF 0.64 19.04 150.87 0.61 0.92 0.60 57.98 12.72 
6-d w/o MAP 0.54 5.24? 0.62 6.53 10.78 0.49 0.64 6.58 
6-d w/o TPS 1.14 3.78? 1.09 0.81 1.91 5.52 3.42 233.37 

8-d 00 0.56 27.99?  5.04  1.01 5.69  
8-d 01 0.41 9.41?  0.35  0.57 1.71  
8-d 10 0.42 14.92? (not 1.28 (not 0.48 0.68 (not 
8-d 11 0.34 0.21? run) 0.29 run) 0.41 0.30 run) 
8-d cp 0.47 14.34?  0.77  0.66 1.90  
8-d 0b 0.29 3.16?  0.26  0.33 1.44  

(+) All numbers were estimated from the last 500 observations of a 2,000 observation 
(200 second) segment, with any simulated faults commencing between observation 
501 and 1,000.   

italics = Should be small:  Kalman filter estimates the discrepant sensitivities  
Bold = Should be large:  Kalman filter does not estimate the discrepant sensitivities  
(*) A question mark (?) is appended to certain numbers in the “MAF constant” column, 

because none of the Kalman filters model well a dead sensor;  see text.   
  

 

The entries in Table 7.3 can be separated into three categories:   

Filter Estimating a Constant:  None of the Kalman filters considered were 

designed to handle well the case of a dead sensor, as indicated in 

the “MAF Constant” column.  However, some of the sensors 

estimated MAF sensitivity parameters, and therefore might 

perform better than the others for this particular simulated fault;  a 

question mark “?” was appended to the estimated relative variance 

ρ  for those cases.   
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Should be small:  The indicated Kalman filter should be able to adapt to a 

fault of the nature indicated, leaving a small value for the estimated 

relative variance ρ̂ .  The largest number in this category in the 

table is 2.06, ignoring the “MAF constant” column.   

Should be large:  For many of the combinations in Table 7.3, the 

estimated relative variance should be large because the Kalman 

filter for that row of the table was not designed to be able to 

compensate for a fault like that simulated.  The smallest number in 

this category in the table is 3.42.   

Our initial idea in approaching this problem was that the 8-d full adaptive filter 

should be able to isolate all but the constant sensor faults in this table.  Unfortunately, our 

early tests revealed a number of cases with unacceptably large prediction errors and ρ̂ , 

e.g., “8-d 00” for MAP dull (030).  To overcome this difficulty, we performed designed 

experiments with Kalman filter model parameters such as the ( )pointcenter 22 +×  

outlined in five of the last six rows of Table 7.1.  The results of these tests, summarized 

in Table 7.3, suggested that further improvement in performance might be obtained in the 

general direction of the bottom row there, labeled “8-d 0b”.  Unfortunately, in all these 

cases, when the noise variance was acceptable, the values of the estimated sensitivity 

parameters could not reliably isolate simulated faults.   

This led us to reconsider the work of Menke and Maybeck (1995) and Eide and 

Maybeck (1996), who suggested running multiple Kalman filters in parallel;  we had 

earlier hoped we could avoid the added complexity of this approach.  To explore this 

further, we produced the first seven rows of Table 7.3.  These results suggest that we 
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should be able to get a working monitor by separating fault detection from isolation:  We 

can track the noise variance ρ  from the “2-d Good” filter to detect a fault, and then isolate 

it by tracking it from the 4- and 6-d monitors:  In the presence of a fault, the relative 

variance ρ  of the “2-d Good” filter explodes, at least in the limited cases considered in 

Table 7.3.  After fault detection, we look among candidate 4-d filters designed to adapt to 

a single defective sensor.  If none of the EWMAs or 4-d filters have small prediction 

error, we next look at the 6-d filters, which should be able to adapt to certain double 

faults.  If one is found with small prediction error, that isolates the fault.  Otherwise, the 

problem must be something else not considered, e.g., a triple fault.   

The poorest separation between good and bad in Table 7.3 appeared with the 

“MAF constant” scenario.  As noted above, none of these Kalman filters could 

necessarily be expected to model well a dead sensor.  Therefore, to deal with this issue, 

we may need to add EWMAs to detect dead sensors from low prediction error.   

Menke and Maybeck (1995) and Eide and Maybeck (1996) suggest computing a 

Bayesian posterior distribution for each alternative model, with two modifications:  They 

put a floor of 0.001 under the posterior probability for any of the multiple models, and 

they deleted the determinant in the denominator of the density in (7.3).  In our approach, 

by explicitly including “Step 2.  Transition” in the update cycle, we automatically get a 

floor under the posterior probability for a particular fault.  We would have to study the 

issue more carefully before commenting on deleting the determinant from (7.3) before 

using the modified density in Bayes’ theorem to track the probability of alternative 

models.   
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However, rather than attempting that, we thought it might be just as simple to run 

a Cusum on the log(likelihood ratio) to detect a jump in the relative variance parameter ρ 

in (7.3).  From analyses such as Table 7.3 using a different data set, we selected a “worst 

acceptable” 0ρ  = 5.02, and a “best unacceptable” 1ρ  = 7.14.  By taking the difference 

between the log(likelihood) in (7.4) for ρ = 1ρ  and ρ = 0ρ , we get the log(likelihood 

ratio) as follows:   

 log(likelihood ratio) = ( ) ( ){ }ttytk eΣe 1
1|

1
1

1
010ln

2
1 −

−
−− ′−+ ρρρρ  = tΛ




 − ~
2
1

10

01

ρρ
ρρ

,   

where with et = (yt – ht,0),  
 tΛ~  = ( ) *1

1| Λ−′ −
− ttyt eΣe ,   

and   (7.6) 
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With 0ρ  = 5.02, and 1ρ  = 7.14, we get *Λ  = 11.9.   

To help us understand (7.6), suppose that 1ρ  = ( )δρ +10 , with δ small.  Then  

 ( )δ
δ

δρ +




 +=Λ 1ln1

0
* k .   

Using ( )δ+1ln  = ( )325.0 δδδ O+− , we get *Λ  = ( ){ }2
0 5.01 δδρ Ok ++ .  But 

( )δρ 5.010 +  = ( ) 210 ρρ +  = ρ , say.  Thus, *Λ  = ( )2δρ Ok + .  But 0ρk  is the expected 

value of the quadratic form ( )ttyt eΣe 1
1|

−
−′  when the plant is good, and ρk  is halfway 

between this expectation for good and bad plants.  While *Λ  differs from this when the 

difference between 0ρ  and 1ρ  is large, this analysis helps sharpen our intuition about the 

behavior of tΛ~  in (7.6).   
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With *Λ  = 11.9, the 2-d and 4-d monitors in Table 7.1 were applied to a different 

segment of 2,000 observations, invoking the good and faulty scenarios listed in Table 7.2.  

Table 7.4 lists the maximum in these 2,000 observations achieved by  

 { }ttt QQ Λ+= −
~,0max 1

σσ ,  (7.7)  

starting with σ
0Q  = 0.   

Table 7.4.  Max Cusum(+) σ
tQ  

  Kalman Filter  
Scenario  (code) 2-d Good  4-d MAF 4-d MAP 4-d TPS 
Good  (000) 368 236 109 48 
MAF constant(*) (100) 47,656 2,927? 42,715 29,544 
MAF offset  (400) 157,931 3,277 149,242 83,814 
MAP dull  (020) 44,279 43,886 1,423 17,389 
MAP hyper  (030) 62,805 57,746 2,527 17,201 
TPS hyper  (003) 26,058 12,302 3,513 174 
dual fault  (402) 302,041 9,287 286,279 106,538 
triple fault  (341) 221,664 118,924 132,708 11,778 
(+) Maximum over 2,000 observations (different from the 2,000 used for Table 7.3)   
italics = Should be small:  Kalman filter estimates the discrepant sensitivities  
Bold = Should be large:  Kalman filter does not estimate the discrepant sensitivities  
(*) None of these monitors are designed to handle well a dead sensor such as “MAF 

constant”.  We have therefore appended a question mark (?) to each of the 
potentially small numbers in the “MAF constant” row.   

 

The numbers in Table 7.4 display what we would expect:  When the filter is 

capable of adapting to the fault, the max Cusum is relatively low;  otherwise, it is larger.  

Some experimentation with the migration rate parameters, as for the 3-d filter in Table 

7.1, might increase the separation between scenario-filter combinations for which we do 

and do not want a fault to be detected.  Note also that the max Cusums for the “Good” 

scenarios are substantially below the max Cusums for all the fault scenarios.  This is, 

again, as we would expect:  We simulated a sudden fault onset.  When a Kalman filter 
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first encounters a sudden fault onset, the prediction errors will be large.  For a filter that 

adapts to the fault, the Cusum will tend to rise until the filter has adapted sufficiently;  

after that, the Cusum will drift back towards 0.  For a filter that can not adapt to the fault, 

the Cusum will generally continue trending upwards towards the stratosphere.  This is, 

indeed, the image we get from most of Table 7.4 and from plots of the Cusums such as 

Figure 7.1.  The primary exception to this rule appears to be the response of the MAP 

adaptive filter to a hyper TPS.  This exception can be partially explained by the fact that 

the TPS is much less important than the MAF and MAP sensors for the control of the 

plant of Figure 6.1.  However, this case deserves more careful study to try to understand 

why the response is not more pronounced and what would likely happen if it had more 

time to respond.   
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Figure 7.1.  Mass Air Flow, Manifold Absolute Pressure, and Cusums for Variance for Four Models  
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Based on the numbers of Table 7.4, we selected for illustration a threshold of 

3,400, between the worst acceptable figure of 3,277 and the best unacceptable figure of 

3,513.  We would use this as an initial threshold, to be adjusted to balance the 

probabilities of a false alarm in the design life of the plant and of an excessive delay to 

detecting a real fault, as discussed in Box et al. (2000).  Figure 7.1 plots MAF, MAP and 

σ
tQ  of (7.7) for the constant MAF scenario (code 100) and for the 4 Kalman filters 

considered in Table 7.4.  In this figure, at fault onset, σ
tQ  for all 4 filters started on a 

general upward trend.  Almost immediately, the MAF adaptive filter compensated for the 

problem, and σ
tQ  began to decline for that filter;  meanwhile, σ

tQ  for the other three 

Kalman filters continued climbing.  Thus, in this example, we had rapid fault detection 

with the 2-d filter assuming a “good” plant.  This was combined with successful fault 

isolation by comparing levels of σ
tQ  for the filters designed to adapt to single faults in 

MAF, MAP and TPS, respectively.   

If we need more separation between good and bad than what we see in Figure 7.1, 

we might note that the worst “good” ρ̂  in Table 7.3 comes with “MAF Constant”.  If we 

got acceptable results from selecting *Λ  ignoring this case, we could add a separate 

diagnostic for this problem, e.g., an EWMA for mean and variance, triggering when the 

EWMA for variance dropped below a certain threshold.   

 

7.3.  Designing Experiments for Monitor Tuning and Evaluation  

Monitors work by looking for discrepancies between observations and predictions 

from a model.  Ideally, we would like to have models for both good and malfunctioning 
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plants, as explained by Box et al. (2000):  If the prediction error is low for one filter and 

high for another, we can usually conclude that the filter with low prediction error better 

models plant behavior.   

If a monitor is not adequate, in general the greatest opportunities for improvement 

lie in improving the models upon which the monitor is built.  Designed experiments can 

be extremely valuable for organizing and reducing the amount of effort required to build 

better models and for improving the quality of information gained from a given effort.  

Basic principles for designing such experiments are discussed elsewhere (e.g., Box, 

Hunter, and Hunter 1978, and Box and Draper 1987) and will not be reviewed here.   

Ignoring for the moment the “constant plausible” (dead sensor) fault, a standard 

response surface approach might be used to evaluate the response of a monitor to “dull”, 

“hyper” and “offset” problems mentioned in Table 7.2.1.  This would allow us to evaluate 

monitor response to “worst acceptable” levels of 0.8 and 1.2 for “dull” and “hyper” slopes 

by parabolic interpolation between the “best unacceptable” levels of 0.6 and 1.4 and the 

“good” slope of 1, without ever testing the “worst acceptable” levels directly.  With slope 

and intercept for each of the three sensors of this example, MAF, MAP, and TPS, this 

would give us a total of 6 factors.  As noted by Box and Draper (1986, Table 15.10), this 

would require a minimum of 28 runs just to estimate the intercept, the 6 main effects, the 

15 two-factor interactions and the 6 pure quadratics, if we knew in advance that there was 

zero measurement and replication error.   

Much of this work could be done by computer experiments, randomly sampling 

different segments of data from physical tests of different vehicles and simulating the 

proposed fault combination.  This kind of computer experiment might process segments 
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of data nested within vehicles as random effects.  These random effects in turn would 

require extra care in evaluation beyond the standard ordinary least squares regression.   

If computer time were sufficiently cheap, we might recommend estimating a 

complete set of parameters from each segment of data, using the same number of data 

segments sampled more or less at random from each of several different vehicles 

(balancing to the extent feasible an appropriate range of operating conditions).  A primary 

response variable in these analyses might be the logarithm of the mean square residuals 

ρ  from the Kalman filter predictions, as in Table 7.3 above.   

Models of log( ρ ) might then be used to select “worst acceptable” and “best 

unacceptable” levels, 0ρ  and 1ρ , as discussed with Table 7.3, but based on the regression 

fit from the data segment - vehicle combinations processed.  These could then be used to 

determine a Cusum centering coefficient, *Λ  of (7.6).  Further experiments might explore 

the sensitivity of the max Cusum of Table 7.4 to variations in *Λ .  In this analysis, the 

logarithm of the max Cusum might be the response variable.  The computations required 

to explore variations in *Λ  could potentially reprocess Kalman filter residuals stored 

from earlier tests, thereby possibly reducing the computer time required for these 

evaluations.   

Beyond this testing, we would need to plan separate tests for “constant plausible” 

faults, mentioned in Table 7.2.1, some of which may need to be combined with other 

faults with other sensors.  For the preparation of this report, the allotted time did not 

permit us to run the response surface experiments just suggested.  We therefore selected 

the “typical” fault combinations considered in Tables 7.2 - 7.4.  Experiments with 
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“constant plausible” conditions in at least one of the three sensors could then be designed 

to explore monitor response to these faults in plausible combination with other faults, 

producing a list of test conditions similar to those discussed here.   

After prototype monitor design is completed including selection of *Λ , we would 

still require final confirmation in prototype units, possibly employing the concepts of 

“accelerated testing for on-board diagnostics” discussed by Bisgaard et al.  (2001).   

 

7.4.  Numerical Stability of Computations  

A number of techniques were tried to improve the performance of the 8-d Kalman 

filter estimating the sensitivity parameters for three sensors.  These included the 

following:   

• Program for numerical stability:  We used some of the features in S-

PLUS to attempt to preserve numerical precision on the matrix 

inversions.  Nothing we tried fixed the problem.  We did not, however, 

rescale all components of the state vector to roughly mean zero and 

standard deviation of one, nor did we meticulously implement the 

complete numerically stable Kalman filtering algorithms of Bierman 

(1977).   

• Control step size:  We placed limits on the maximum step size.  In 

some cases, with inappropriate implementation of the algorithm, 

especially with inputs outside the range of that considered in the 

nonlinear transfer functions programmed to model the air intake 
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system of Figure 6.1, we got very large steps.  We programmed the 

algorithm to place a limit on the magnitude of a change between one 

observation and the next.  We did not test this idea extensively, but our 

preliminary efforts in this direction did not obviously improve the 

performance of the monitor.   

• Check for outliers:  We checked the prediction errors for normality.  

We found the pattern of a contaminated normal:  A normal probability 

plot (with data on the horizontal axis) showing a steep section in the 

middle (small standard deviation) and points with a common, 

shallower slope (higher standard deviation) in the tails (Titterington, 

Smith, and Makov 1985).  We were able to explain roughly half of 

these outliers and modify the algorithm to eliminate them.  This 

improved the performance of all the Kalman filters slightly, but did not 

substantially improve the performance of any of them.   

There are other techniques that we did not try but that may improve the numerical 

precision of Kalman filtering computations:   

• Rescale:  In computations of this type, especially using 8- and 16-bit 

microprocessors, it is generally wise to rescale all variables so they 

have very roughly mean 0 and standard deviation of 1.  We recently 

had an experience computing 100 x 100 covariance matrices from 

thousands of observations in which rescaling made the difference 

between numerical stability and instability:  Without rescaling, 
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virtually all our covariance matrices were numerically singular.  With 

rescaling, this problem completely disappeared.   

• Limit the use of estimated correlations in the covariance matrices for 

measurements, Vt, and migration, Wt:  Practical experience suggests 

that routine use of estimated correlations in relatively high dimensions 

may encounter numerical difficulties.  In k dimensions, an estimated 

covariance matrix includes, in essence, the estimation of k standard 

deviations plus ( ) 21−kk  correlations.  In such situations, it may be 

wise to impose a variety of constraints to limit the number of 

independent parameters estimated in Vt and Wt , perhaps using 

concepts from factor analysis and / or structural equation estimation.     

• Verify that tt|Σ  and 1| −ttΣ  are always comfortably nonsingular:  If 

either of these matrices gets close to being numerically singular, this 

might generate numerical instabilities in the computations.  If that 

happens it would be wise to check the matrix of first partial derivatives 

of the transition function, ft(xt , ut), in (6.1) above.  Recall from the 

appendix in section 6 above that ttttttt WfΣfΣ +′=+ 1,|1,|1 , where  

ft,1 = 
( )

t

ttttt

x
uxxf

∂
=∂ ,| . 

If this matrix poorly conditioned, it could affect other computations in 

the Kalman update cycle, generating numerical stability problems.   

• Ignore wild observations:  West and Harrison (1999, ch. 11) discussed 

simply ignoring observations with extreme prediction errors.  While 
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we did some checks for outliers and made some effort to limit 

resulting step sizes, we did not try this.  In some cases, large prediction 

errors contain essentially no information about the state of the plant, 

having been generated by substantially different process.  In such 

cases, it may be best simply to skip the Kalman updating step for that 

observation.  Of course, one must be careful in doing this, because 

such outliers could by themselves signal a malfunction of interest.  A 

reasonable compromise might be to limit outliers to a certain 

maximum that would still permit them to have some effect on the 

estimated state of the plant while contributing appropriately to a 

Cusum of prediction errors indicating an inadequate model, as 

discussed in section 7.1 above.  Under certain circumstances, West and 

Harrison (1999, ch. 12) suggested running two Kalman filters for a 

short period of time, one ignoring a wild observation and the other 

processing it.  Two or three observations later, the one with the larger 

prediction error can be terminated and the wild observation can then be 

classified as either something that should or should not be considered 

in the model.   

• Cholesky Computations:  While we made some effort to improve the 

numerical precision of computations, we did not try programming 

Kalman filtering in terms of the Cholesky square roots of the relevant 

covariance matrices, as discussed by Bierman (1977).  By some 
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reports, this can cut in half the number of significant digits required in 

certain applications. 

 

7.5.  Conclusions  

In this section, we have described a procedure for detecting faults by an excessive 

elevation in a relative variance parameter.  This could be accomplished either using a 

Cusum for variance as discussed here or an EWMA for variance, generalizing the 

techniques discussed in section 4 above.  Fault isolation could then be achieved by 

scanning “multiple models”, each one designed to describe a particular fault or 

combination of faults.  Fault isolation is achieved by looking for a model with low 

relative variance.  In the example discussed in Tables 7.3 and 7.4, we scanned first a list 

of monitors designed to mimick isolated faults.  If the relative variances for all those 

models were high, the plant must be experiencing a multiple fault.  A subsequent review 

of models for pairwise failures should then find a model with low relative variance if it is 

only a pairwise fault.  Otherwise, we conclude that the fault has is not one of those 

modeled, e.g., a triple fault.   

For extensions to the current work, see the literature on distributed Kalman filters, 

e.g., in Bar-Shalom (1990) and Bar-Shalom and Blair (2000).   
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Part III.  Concluding Remarks  
 

 
 

 
 

This study has explored the power of Bayesian sequential updating as a basic 

principle for the design of procedures to detect and isolate faults in complex systems.   
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PART III.  CONCLUDING REMARKS  

In our complex, advanced society, our productivity, quality of life, and even our 

very survival depend on proper functioning of complex systems.  Much of our time is 

spent trying to figure out why one system or another does not operate as we anticipate.  

Even worse, many people are killed each year when the vehicles in which they are riding 

malfunction or otherwise perform in ways they did not anticipate.  People also die or 

suffer unnecessarily because certain problems are misdiagnosed or are diagnosed too late.  

The batteries or the electrodes on heart pacemakers fail without alerting patient or 

physician.  In recent years, people have died from bacterial contamination of the drinking 

water in cities like Milwaukee, WI, where the water is supposedly monitored routinely to 

ensure potability.  To combat air pollution, governments in the US, Canada and Europe 

now attempt to improve air quality by requiring that all new automobiles sold today in 

their jurisdictions contain on-board diagnostics (OBDs) designed to inform the driver of 

conditions that may jeopardize the emission control systems;  other nations around the 

world are adopting similar regulations.  These situations all call for effective monitors to 

detect and help diagnose malfunctions.   

In this report, we have tried to establish Bayesian sequential updating as a 

conceptual foundation for monitoring.  We distinguish monitoring from testing in that 

testing attempts to evaluate a fixed, unchanging state or condition of nature, while 

monitoring looks for a change.  Of course, there is some overlap:  In clinical trials, 

researchers test to determine if a new therapy is safe and effective.  They also monitor for 

changes in each patient’s condition.  In some cases, monitoring has been described as a 

sequence of tests.  In fact, monitoring is fundamentally different from testing, because in 
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monitoring we are more concerned with the delay to detection of a problem than with the 

probability of failing to detect it at a particular point in time.   

Bayesian sequential updating is a two-step procedure:   

1.  Observation and Bayes’ theorem:  Collect data and update one’s 

perception of the condition of the plant by applying Bayes’ 

theorem.   

2.  Migration:  Permit the plant to deteriorate or otherwise transition to a 

different, possibly deficient, condition.   

In this report, we have derived common monitoring procedures from different 

assumptions about the observation and migration processes.  In so doing, we have derived 

procedures essentially equivalent to the popular cumulative sum (Cusum, section 2) and 

exponentially weighted moving average (EWMA, sections 3 and 4) monitors.  We have 

also derived other procedures for addressing more subtle monitoring applications, using 

Kalman filtering (sections 5 and 6) and multiple model adaptive estimation (MMAE, 

section 7) to exploit the analytic redundancy inherent in applications where the laws of 

physics permit the use of multiple sensors to check each other.   

To apply Bayesian sequential updating, there is no need for subjective 

probabilities.  It is difficult to imagine someone designing a monitor for something that is 

unrelated to anything that has occurred before.  If there were no reference population of 

faults, there would be no motivation to design a monitor.  In section 2, we made explicit 

use of the hazard rate to design a Bayes-adjusted Cusum.  In section 3, we described how 

the key parameters for designing an exponentially weighted moving average monitor can 
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be estimated from reliability data and from studies of gage repeatability and 

reproducibility.   

One class of common monitors was not discussed:  statistical control charts.  In 

essence, these procedures assume that every observation comes from a mixture of 

distributions where one component is dominant, and we want to detect the observations 

that come from a (presumed rare) contaminating distribution.  In terms of Bayesian 

sequential updating, we could say that the migration step is absent, and the application of 

Bayes’ theorem is converted into a simple assessment of whether each point comes from 

the dominant or contaminating distribution.   

In sum, we believe we have established Bayesian sequential updating as a very 

powerful and flexible principle for designing monitors for specialized applications.   
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